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We construct a sheaf-theoretic representation of quantum observables algebras over a
base category equipped with a Grothendieck topology, consisting of epimorphic families
of commutative observables algebras, playing the role of local arithmetics in measure-
ment situations. This construction makes possible the adaptation of the methodology of
Abstract Differential Geometry (ADG), à la Mallios, in a topos-theoretic environment,
and hence, the extension of the “mechanism of differentials” in the quantum regime.
The process of gluing information, within diagrams of commutative algebraic localiza-
tions, generates dynamics, involving the transition from the classical to the quantum
regime, formulated cohomologically in terms of a functorial quantum connection, and
subsequently, detected via the associated curvature of that connection.
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1. PROLOGUE

The working understanding of contemporary physical theories is grounded
on the notion of observables. Observables are associated with physical quantities
that, in principle, can be measured. In this sense physical systems are completely
described by the collection of all observed data determined by adequate devices in
appropriate measurement situations. The mathematical formalization of this pro-
cedure relies on the idea of expressing the observables by functions corresponding
to measuring devices. Usually it is also stipulated that quantities admissible as
measured results must be real numbers. It is a common belief that the resort to
real numbers has the advantage of making our empirical access secure. Hence the
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underlying assumption on the basis of physical theories postulates that our form
of observation is expressed by real number representability, and subsequently,
observables are modelled by real-valued functions corresponding to measuring
devices. At a further stage of development of this idea, two further assumptions
are imposed on the structure of observables: the first of them specifies the algebraic
nature of the set of all observables used for the description of a physical system, by
assuming the structure of a commutative unital algebra A over the real numbers.
The second assumption restricts the content of the set of real-valued functions
corresponding to physical observables to those that admit a mathematical charac-
terization as measurable, continuous or smooth. Thus, depending on the means of
description of a physical system, observables are modelled by R-algebras of mea-
surable, continuous or smooth functions corresponding to suitably specifiable in
each case measurement environments. Usually the smoothness assumption is pos-
tulated because it is desirable to consider derivatives of observables and effectively
set-up a kinematical framework of description in terms of differential equations.
Moreover, since we have initially assumed that real-number representability con-
stitutes our form of observation in terms of the readings of measuring devices,
the set of all R-algebra homomorphisms A→ R, assigning to each observable in
A, the reading of a measuring device in R, encapsulates all the information col-
lected about a physical system in measurement situations in terms of algebras of
real-valued observables. Mathematically, the set of all R-algebra homomorphisms
A→ R is identified as the R-spectrum of the unital commutative algebra of ob-
servables A. The physical semantics of this connotation denotes the set that can be
R-observed by means of this algebra. It is well known that, in case A stands for a
smooth algebra of real-valued observables, R-algebra homomorphisms A→ R
can be legitimately identified with the points of a space that can be observed by
means of A, namely the points of a differential manifold that, in turn, denote
the states of the observed physical system. From this perspective state spaces in
general are derivative notions referring to sets of points R-observed, through the
lenses of corresponding algebras of observables.

An equally important notion referring to the conceptualization of physical
observables is related with the issue of localization. Usually the operationaliza-
tions of measurement situations assume their existence locally and the underlying
assumption is that the information gathered about observables in different mea-
surement situations can be collated together by appropriate means. The notion of
local requires the specification of a topology on an assumed underlying measure-
ment space over which algebras of observables may be localized. The net effect
of this localization procedure of algebras of observables together with the require-
ment of compatible information collation along localizations are formalized by
the notion of sheaf. A sheaf of commutative unital R-algebras of observables
incorporates exactly the conditions for the transition from locally collected ob-
servable data to globally defined ones. In case of smooth observational procedures
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the notion of a sheaf of smooth R-algebras of observables A, means that locally
A is like the R-algebra C∞(Rn) of infinitely differentiable functions on Rn.

The interpretative power of this modeling scheme, based on sheaves of al-
gebras of observables, has been recently vastly enhanced by the development of
Abstract Differential Geometry (ADG) à la Mallios (Mallios, 1998, 2003, 2006a,
2005a,b, 2006b; Mallios and Rosinger, 1999, 2001), which generalizes the dif-
ferential geometric mechanism of smooth manifolds. Remarkably, it shows that
most of the usual differential geometric constructions can be carried out by purely
algebraic means without any use of any sort of C∞-smoothness or any of the
conventional calculus that goes with it. This conclusion is important because it
permits the legitimate use of any appropriateR-algebra sheaf of observables suited
to a measurement situation, even Rosinger’s singular algebra sheaf of generalized
functions (Mallios and Rosinger, 1999, 2001), without loosing the differential
mechanism, prior believed to be solely associated with smooth manifold state-
spaces. Most significantly, ADG has made us realize that the differential geometric
mechanism in its abstract algebraic sheaf theoretical formulation expressing from
a physical viewpoint the kinematics and dynamics of information propagation
through observables, is independent of the localization method employed for the
extraction and subsequent coordinatization of its content. Thus, algebra sheaves
of smooth real-valued functions together with their associated by measurement
manifold R-spectrums are by no means unique coordinatizations of the universal
physical mechanism of qualitative information propagation through observables.

The major foundational difference between classical and quantum physi-
cal systems from the perspective of the modeling scheme by observables is a
consequence of a single principle that can be termed principle of simultaneous
observability. According to this, in the classical description of physical systems all
their observables are theoretically compatible, or else, they can be simultaneously
specified in a single local measurement context. On the other side, the quantum
description of physical systems is based on the assertion of incompatibility of all
theoretical observables in a single local measurement context, and as a conse-
quence quantum-theoretically the simultaneous specification of all observables is
not possible. The conceptual roots of the violation of the principle of simultaneous
observability in the quantum regime is tied with Heisenberg’s uncertainty princi-
ple and Bohr’s principle of complementarity of physical descriptions (Bohr, 1958;
Folse, 1985; Bub, 1997; Dieks, 1993; Varadarajan, 1968). A natural question that
arises in this setting is whether one could express algebras of quantum observables
in terms of structured families of local commutative algebras of classical observ-
ables capable of carrying all the information encoded in the former. Of course, the
notion of local has to be carefully redesigned in this formulation, as it will become
clear at a later stage. From a category-theoretic standpoint, the transition from a
classical to a quantum description can be made simply equivalent to a transition
from a category of commutative algebra sheaves of observables to a category of
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diagrams of commutative algebra sheaves of observables. The advantage of this
formulation in comparison to global non-commutative axiomatizations of opera-
tor algebras of quantum observables is twofold: firstly, it makes transparent the
construction of an algebra of quantum observables from the interconnection of
locally defined commutative algebras of classically conceived observables, and
secondly, it makes possible the extension of the differential geometric mechanism
of ADG in the quantum regime, thus, in effect, of the classical one, as well.

According to the above line of reasoning, we are guided in expressing a
globally non-commutative object, like an algebra of quantum observables, in
terms of structured families of commutative algebras of observables, which have
to satisfy certain compatibility relations, and also, a closure constraint. Hence,
commutative algebras of real-valued observables are used locally, in an appropri-
ate manner, accomplishing the task of providing partial congruent relations with
globally non-commutative observable algebras, the internal structure of which,
is being effectively expressed in terms of the interconnecting machinery binding
the local objects together. This point of view stresses the contextual character of
quantum theory and establishes a relation with commutative algebras associated
with typical measurement situations. In order to proceed a suitable mathematical
language has to be used. The criterion for choosing an appropriate language is
rather emphasis in the form of the structures and the universality of the construc-
tions involved. The ideal candidate for this purpose is provided by category theory
(Lawvere and Schanuel, 1997; MacLane, 1971; Borceaux, 1994; Kelly, 1971;
Bell, 2001, 1986, 1982). Subsequently, we will see that sheaf theory (MacLane
and Moerdijk, 1992; Bell, 1988; Artin et al., 1972), (yet, see also Mallios (1998)),
is the appropriate mathematical vehicle to carry out the program implied by the
proposed methodology.

The concept of sheaf expresses essentially gluing conditions, namely, the
way by which local data can be collated into global ones. It is the mathemati-
cal abstraction suited to formalizing the relations between covering systems and
properties, and, furthermore, provides the means for studying the global con-
sequences/information from locally defined properties. The notion of local is
characterized “geometrically,” viz. by using a topology (in the general case a
Grothendieck topology on a category), the axioms of which express closure con-
ditions on the collection of covers. Essentially, a map which assigns a set to each
object of a topology is called a sheaf if the map is locally defined, or else the
value of the map on an object can be uniquely obtained from its values on any
cover of that object. Categorically speaking, besides mapping each object to a set,
a sheaf maps each arrow in the topology to a restriction function in the opposite
direction. We stress the point that the transition from locally defined properties
to global consequences/information happens via a compatible family of elements
over a covering system of the global object. A covering system of the global object
can be viewed as providing a decomposition of that object into local objects. The
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sheaf assigns a set to each element of that system, or else, to each local piece
of the original object. A choice of elements from these sets, one for each piece,
forms a compatible family if the choice respects the mappings by the restriction
functions and if the elements chosen agree whenever two pieces of the covering
system overlap. If such a locally compatible choice induces a unique choice for
the object being covered, viz. a global choice, then the condition for being a sheaf
is satisfied. We note that in general, there will be more locally defined or partial
choices than globally defined ones, since not all partial choices need be extendible
to global ones, but a compatible family of partial choices uniquely extends to a
global one, or in other words, any presheaf uniquely defines a sheaf; thus, see e.g.
Mallios (2004a), for an “information/choice”-theoretic formulation of the same.

In the following sections we shall see that a quantum observables algebra can
be understood as a sheaf for a suitable Grothendieck topology on the category of
commutative subalgebras of it. The idea is based on extension and elaboration of
previous works of the author, communicated, both conceptually and technically,
in the literature (Zafiris, 2001, 2004a,b,c, 2006). In all these papers, the focus has
been shifted from point-set to topological localization models of quantum algebraic
structures, that effectively, induce a transition in the semantics of observables from
a set-theoretic to a sheaf-theoretic one. The primary physical motivation behind
this strategy, has been generated by investigating the possibility of mathematically
implementing localization processes referring to physical observation, concerning
in particular quantum phenomena, that is not necessarily based on the existence
of an underlying structure of points on the real line.

It is also instructive to mention that, contextual topos theoretical approaches
to quantum structures have been also developed, from a different viewpoint in
Butterfield and Isham (1998), Butterfield and Isham (1999), Rawling and Se-
lesnick (2000), Raptis (2001), Butterfield and Isham (2000). Moreover, the ne-
cessity of implementation of a sheaf-theoretic framework for overcoming the
problems of singularities has been thoroughly discussed recently in Mallios and
Raptis (2004). Finally, the central thesis of Selesnick (2004), according to which,
quantum physics at a fundamental level may itself be realized as a species of
quantum computation, is strongly embraced by the author.

2. CATEGORIES OF OBSERVABLES

Category theory provides a general apparatus for dealing with mathematical
structures and their mutual relations and transformations. The basic categorical
principles that we adopt in the subsequent analysis are summarized as follows:

(i) To each kind of mathematical structure, there corresponds a category
whose objects have that structure, and whose morphisms preserve it.
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(ii) To any natural construction on structures of one kind, yielding structures
of another kind, there corresponds a functor from the category of the first
kind to the category of the second.

(iii) To each translation between constructions of the above form there corre-
sponds a natural transformation.

2.1. Classical and Quantum Observables Structures

A Classical Observables structure is a small category, denoted by AC , and
called the category of Classical Observables algebras, or of classical arithmetics.
Its objects are commutative unital R-algebras of observables, and its arrows are
unit preserving R-algebras morphisms. Thus, AC is a subcategory of that one of
commutative unital R-algebras and unit preserving R-algebra morphisms.

Examples:.

(i) We consider the Boolean algebra of eventsB associated with the measure-
ment of a physical system. In any experiment performed by an observer,
the propositions that can be made concerning a physical quantity are of
the type, which asserts that, the value of the physical quantity lies in some
Borel set of the real numbers. The proposition that the value of a physical
quantity lies in a Borel set of the real line corresponds to an event in the
ordered event structure B, as it is apprehended by an observer. Thus we
obtain a mapping AC : Bor(R) −→ B from the Borel sets of the real line
to the event structure which captures precisely the notion of observable.
Most importantly the above mapping is required to be a homomorphism.
In this representation Bor(R) stands for the algebra of events associated
with a measurement device interacting with a physical system. The ho-
momorphism assigns to every empirical event in Bor(R) a proposition
or event in B, that states, a measurement fact about the physical system
interacting with the measuring apparatus. According to Stone’s represen-
tation theorem for Boolean algebras, it is legitimate to replace Boolean
algebras by fields of subsets of a measurement space. Hence we may re-
place the Boolean algebra B by its set-theoretical representation [�,B�],
consisting of a measurement space � and its field of subsets B� . Then
observables ξ are in injective correspondence with inverses of random
variables f : � → R. In this setting we may also identify a classical ob-
servables algebra with the R-algebra of measurable functions defined on
the measurement space �.

(ii) We assume that the measurement space [�,B�] above, is identified with
the σ -algebra of Borel subsets of a topological space X. In this setting
we could consider as a classical observables algebra the R-algebra of
continuous functions defined on X.
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(iii) We assume that the topological space X above is paracompact and Haus-
dorff, and furthermore that can be endowed with the structure of a differ-
ential manifold. In this setting we could consider as a classical observables
algebra the R-algebra of smooth functions on X.

A Quantum Observables structure is a small category, denoted by AQ, and
called the category of Quantum Observables algebras, or of Quantum arith-
metics. Its objects are thus unital R-algebras of observables, and its arrows
are unit preserving R-algebras morphisms. Hence, in other words, AQ is a
subcategory of the category of unital R-algebras and unit preserving algebra
morphisms.

Examples:.

(i) We consider the algebra of events L associated with the measurement
of a quantum system. In this case L is not a Boolean algebra, but an
orthomodular σ -orthoposet. A quantum observable � is defined to be an
algebra morphism from the Borel algebra of the real line Bor(R) to the
quantum event algebra L (Varadarajan, 1968; Zafiris, 2001, 2004a,c).

� : Bor(R) −→ L

such that: (i) �(∅) = 0, �(R) = 1, (ii) E
⋂
F = ∅ ⇒ �(E) ⊥ �(F ), for

E,F ∈ Bor(R), (iii) �(
⋃

nEn) = ∨
n�(En), where E1, E2, . . . sequence

of mutually disjoint Borel sets of the real line. Addition and multiplica-
tion on R induce on the set of quantum observables the structure of a
partial commutative algebra over R. In most of the cases the stronger
assumption of a non-commutative algebra of quantum observables is
adopted.

(ii) If L is isomorphic with the orthocomplemented lattice of orthogonal pro-
jections on a Hilbert space, then it follows from von Neumann’s spectral
theorem that the quantum observables are in 1–1 correspondence with the
hypermaximal Hermitian operators on the Hilbert space.

(iii) An algebra of quantum observables can be made isomorphic to the partial
algebra of Hermitian elements in a C∗-algebra.

The crucial observation that the development of this paper will be based on,
has to do with the fact that a globally non-commutative or partial algebra of quan-
tum observables determines an underlying diagram of commutative subalgebras.
Then each commutative subalgebra can be locally identified, in a sense that will
be made clear later, with an algebra of classical observables. Thus the information
that is contained in an algebra of quantum observabes can be recovered by a gluing
construction referring to its commutative subalgebras. This construction is also
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capable of extending the differential geometric mechanism to the regime of quan-
tum systems via ADG sheaf-theoretical methodology and collating information
appropriately.

2.2. The Notion of Differential Triad

A Differential Triad is a concept introduced by A. Mallios in an axiomatic
approach to Differential Geometry (Mallios, 1998). The notion of Differential
Triad replaces the assumptions on the local structure of a topological space
X for its specification as a manifold, namely charts and atlases, with assump-
tions on the existence of a derivative (“flat connection”) on an arbitrary sheaf
of algebras on X, playing the equivalent role of the structure sheaf of germs of
smooth functions on X. The major novelty of this notion relies on the fact that
any sheaf of algebras may be regarded as the structural sheaf of a differential
triad capable of providing a differential geometric mechanism, independent thus
of any manifold concept, analogous, however, to the one supported by smooth
manifolds.

The significance of the notion of Differential Triad for the purposes of the
present work can be made clear in a procedure consisting of two levels: The first
level considers the localization of a commutative unital R-algebra of observables
over a topological measurement spaceX. The general methodology of localization,
by means of an arbitrary topological commutative algebra has been discussed
extensively in Mallios (2004a). The localization procedure provides a sheaf of
unital, commutative R-algebras of observables over X. Having at our disposal
this localized structure we may set up a differential triad associated with the sheaf
of commutative algebras of observables AC as follows: Let � be an AC-module,
that is,� stands for a sheaf of R-vector spaces overX, such that�(U ) is anAC(U)
module, for every U in the topology τX of X. Besides, let ϑ := (ϑU ) : AC → �

be a sheaf morphism. Then the triplet � = (AC, ϑ,�) constitutes a differential
triad, if it satisfies the following conditions:

(i) ϑ is R-linear, and
(ii) ϑ satisfies the Leibniz rule: for every pair (ξ1, ξ2) in AC×XAC it holds

that

ϑ(ξ1 · ξ2) = ξ1 · ϑ(ξ2)+ ξ2 · ϑ(ξ1)

In this manner for every localized commutative unital R-algebra sheaf of
observables suited to a measurement situation we may associate a differential
triad � = (AC, ϑ,�) as above, that is capable of expressing according to ADG
a generalized differential geometric mechanism referred to the propagation of
information encoded in the sheaf AC , that in turn, instantiates a coordinatized
arithmetic suited for the study of a physical system associated with a measurement
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environment. It is instructive to emphasize here that classically speaking, viz.
for a classical physical system, all the observables are theoretically compatible,
or simultaneously detectable, thus a single differential triad is enough for the
complete determination of the former mechanism.

The second level of the proposed scheme has the purpose of extending
the differential geometric mechanism to globally non-commutative algebras of
quantum observables. We may remind that according to the principle of non-
simultaneous observability in the quantum regime, as above, the observables of
quantum systems are not compatible. Thus, a single differential triad associated
with a commutative sector of an algebra of quantum observables is not possible
to encode the totality of the information required for the set-up of a general-
ized differential geometric mechanism in the quantum case. What is needed is
a procedure of gluing together differential triads attached to local commutative
sectors. In this case the notion of local is distinguished from the classical case
and is naturally provided by the definition of an appropriate Grothendieck topol-
ogy over the opposite category of commutative subalgebras of a quantum algebra
of observables. In this perspective an algebra of quantum observables, or quan-
tum arithmetic, can be made isomorphic with a sheaf of locally commutative
algebras of observables for this Grothendieck topology. Thus the differential ge-
ometric mechanism, following ADG, can be now applied locally in the quantum
regime, as well, by referring to the aforementioned sheaf of locally commuta-
tive algebras of observables. In the sequel, it will become clear that the transi-
tion to the quantum regime involves considering diagrams of differential triads
attached to commutative subalgebras of an algebra of quantum observables, to-
gether with a generalized conception of locality in the Grothendieck sense, that
permits collation of local information in a sheaf-theoretic manner among these
diagrams.

Since a quantum algebra of observables could be theoretically built up from
diagrams of commutative algebras of observables, each one of them carrying a
differential triad, it is necessary to specify their morphisms in a category-theoretic
language. Let us consider that �X = (AX

C, ϑX,�X), �Y = (AY
C, ϑY ,�Y ) are

differential triads associated with measurement situations that take place over the
topological spaces X, Y respectively. A morphism from �X to �Y is a triplet
(z, zAC

, z�) such that:

(i) z : X→ Y is a continuous map,
(ii) zAC

: AY
C → z∗(AX

C) is a unit preserving morphism of classical sheaves
of R-algebras over Y, where z∗ : ShX → ShY denotes the push-out func-
tor,

(iii) z� : �Y → z∗(�X) is a morphism of sheaves of R-vector spaces over Y,
such that z�(ξω) = zAC

(ξ )z�(ω) ∀(ξ, ω) in AY
C ×Y �Y ,
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(iv) the diagram below, denoting push-out operations of differential triads,
commutes;

In the sequel, the category of differential triads associated with the subcate-
gory of commutative algebras of a quantum algebra of observables will be used
only when we discuss the extension of the differential geometric mechanism in
the quantum regime. The description of localization of a quantum algebra of ob-
servables with respect to an appropriate Grothendieck topology on the opposite
subcategory of its commutatives algebras will be based solely on the definitions
provided in Section 2.1 for reasons of simplicity in the exposition of the method.
Of course, it is obvious that a commutative subalgebra of a quantum observables
algebra once localized itself over a measurement topological space X becomes a
sheaf. Hence, as we shall see in detail in what follows, a differential triad can be
appropriately associated with it.

3. FUNCTOR OF POINTS OF A QUANTUM OBSERVABLES ALGEBRA

The development of the ideas contained in the proposed scheme are based
on the notion of the functor of points of a quantum observables algebra, so it is
worthwhile to explicate its meaning in detail. The ideology behind this notion
has its roots in the work of Grothendieck in algebraic geometry. If we consider
the opposite of the category of algebras of quantum observables, that is, the
category with the same objects but with arrows reversed Aop

Q , each object in that
context can be thought of as the locus of a quantum observables algebra, or else
it carries the connotation of space. The crucial observation is that, any such space
is determined, up to canonical isomorphism, if we know all morphisms into this
locus from any other locus in the category. For instance, the set of morphisms
from the one-point locus to AQ in the categorial context of Aop

Q determines the
set of points of the locus AQ. The philosophy behind this approach amounts to
considering any morphism in Aop

Q with target the locus AQ as a generalized point
of AQ. For our purposes we consider the description of a locus AQ in terms of all
possible morphisms from all other objects of Aop

Q as redundant. For this reason we
may restrict the generalized points of AQ to all those morphisms in Aop

Q having
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as domains spaces corresponding to commutative subablgebras of a quantum
observables algebra. Variation of generalized points over all domain-objects of the
subcategory of Aop

Q consisting of commutative algebras of observables produces
the functor of points of AQ restricted to the subcategory of commutative objects,
identified, in what follows, with Aop

C . This functor of points of AQ is made then an
object in the category of presheaves SetsA

op

C , representing a quantum observables
algebra—(in the sequel for simplicity we talk of an algebra and its associated locus
tautologically)—in the environment of the topos of presheaves over the category
of its commutative subalgebras. This methodology will prove to be successful if
it could be possible to establish an isomorphic representation of AQ in terms of
its generalized points AC → AQ, considered as morphisms in the same category,
collated together by sheaf-theoretical means.

From a physical point of view, the domains of generalized points of AQ

specify precisely the kind of loci of variation that are used for individuation of
observable events in the physical continuum in a quantum measurement situa-
tion, accomplishing an instantiation of Bohr’s conception of a phenomenon, as
referring exclusively to observations obtained under specific circumstances that
constitute a physical descriptive context. Thus, the methodological underpinning
of the introduction of generalized points AC → AQ adapt Bohr’s concept of phe-
nomenon as a referent of the assignment of an observable quantity to a system,
in the context of a commutative domain considered appropriately as a local en-
vironment of measurement. In this sense generalized points play the equivalent
role of generalized reference frames, such that reference to concrete events of
the specified kind can be made possible only with respect to the former. In the
trivial case the only locus is a point serving as a unique idealized measure of
localization, and moreover, the only kind of reference frame is the one attached to
a point. This kind of reference frames are used in classical physics, but prove to
be insufficient for handling information related with quantum measurement situa-
tions due to the principle of non-simultaneous observability explicated previously.
Hence, generalized points AC → AQ constitute reference frames only in a local
sense by means of a Grothendieck topology, to be introduced at a latter stage, and
information collected in different or overlapping commutative local domains AC

can be collated appropriately in the form of sheaf theoretical localization systems
of AQ. The net effect of this procedure, endowed in the above sense with a solid
operational meaning, is the isomorphic representation of a quantum observable
structure via a Grothendieck topos, understood as a sheaf for a Grothendieck
topology. The notion of topos is essential and indispensable to the comprehension
of the whole scheme, because it engulfs the crucial idea of a well-defined vari-
able structure, admitting localizations over a multiplicity of generalized reference
domains of coordinatizing coefficients, such that information about observable
attributes collected in partially overlapping domains can be pasted together in
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a meaningful manner. Pictorially, the instantiation of such a topos theoretical
scheme can be represented as a fibered structure, which we may call, as we shall
see, a quantum observable structure, that fibers over a base category of varying
reference loci, consisting of locally commutative coefficients, specified by oper-
ational means and standing for physical contexts of quantum measurement. We
may formalize the ideas exposed above as follows: We make the basic assumption
that, there exists a coordinatization functor, M : AC −→ AQ, which assigns to
commutative observables algebras in AC , that instantiates a model category, the
underlying quantum algebras from AQ, and to commutative algebras morphisms
the underlying quantum algebraic morphisms.

If Aop

C is the opposite category of AC , then SetsA
op

C denotes the functor
category of presheaves of commutative observables algebras, with objects all
functors P : Aop

C −→ Sets, and morphisms all natural transformations between
such functors. Each object P in this category is a contravariant set-valued func-
tor on AC , called a presheaf on AC . The functor category of presheaves on
commutative observables algebras SetsA

op

C , exemplifies a well defined notion of
a universe of variable sets, and is characterized as a topos. We recall that a
topos is a category which has a terminal object, pullbacks, exponentials, and
a subobject classifier, that is conceived as an object of generalized truth val-
ues. In this sense, a topos can be conceived as a local mathematical frame-
work corresponding to a generalized model of set theory, or as a generalized
space.

For each commutative algebra AC of AC , P(AC) is a set, and for each
arrow f : CC −→ AC , P(f ) : P(AC) −→ P(CC) is a set-function. If P is a
presheaf on AC and p ∈ P(AC), the value P(f )(p) for an arrow f : CC −→
AC in AC is called the restriction of p along f and is denoted by P(f )
(p) = p · f .

Each object AC of AC gives rise to a contravariant Hom-functor y[AC] :=
HomAC

(−, AC). This functor defines a presheaf on AC . Its action on an object
CC of AC is given by

y[AC](CC) := HomAC (CC,AC)

whereas its action on a morphism DC
x−→ CC , for v : CC −→ AC is given by

y[AC](x) : HomAC
(CC,AC) −→ HomAC

(DC,AC)

y[AC](x)(v) = v ◦ x

Furthermore y can be made into a functor from AC to the contravariant
functors on AC

y : AC −→ SetsA
op

C
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such that AC �→HomAC
(−, AC). This is called the Yoneda embedding and it is a

full and faithful functor.
Next we construct the category of elements of P, denoted by G(P,AC).

Its objects are all pairs (AC, p), and its morphisms (ÁC, ṕ)→(AC, p) are those
morphisms u : ÁC→AC of AC for which pu = ṕ. Projection on the second co-
ordinate of G(P,AC), defines a functor G(P) : G(P,AC)→AC . G(P,AC) to-
gether with the projection functor G(P) is called the split discrete fibration in-
duced by P, and AC is the base category of the fibration. We note that the
fibers are categories in which the only arrows are identity arrows. If AC is an
object of AC , the inverse image under G(P) of AC is simply the set P(AC),
although its elements are written as pairs so as to form a disjoint union. The
construction of the fibration induced by P, is called the Grothendieck construction
(Artin et al., 1972).

Now, if we consider the category of quantum observables algebras AQ and
the coefficient functor M, we can define the functor;

R : AQ → SetsA
op

C

from AQ to the category of presheaves of commutative observables algebras given
by:

R(AQ) : AC �→R(AQ)(AC) := HomAQ
(M(AC), AQ)

According to the philosophy of the functor of points of a quantum observables
algebra, the objects of the category of elements G(R(AQ),AC) constitute gener-
alized points of AQ in the environment of presheaves of commutative observables
algebras AC .

We notice that the set of objects of G(R(AQ),AC), considered as a small cat-
egory, consists of all the elements of all the sets R(AQ)(AC), and more concretely,
has been constructed from the disjoint union of all the sets of the above form,
by labeling the elements. The elements of this disjoint union are represented as
pairs (AC,ψAC

|(ψAC
: M(AC) −→ AQ)) for all objects AC of AC and elements

ψAC
∈ R(AQ)(AC).
It is finally instructive to clarify that the functor of points of a quantum

observables algebra, can be also legitimately made an object in the category of
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presheaves of modules ModAop

C , under the requirement that its composition with
the forgetful functor Fr : Mod → Sets is the presheaf of sets functor of points as
determined above.

4. THE ADJOINT FUNCTORIAL CLASSICAL-QUANTUM RELATION

The existence of an adjunctive correspondence between the commutative and
quantum observables algebras, which will be proved in what follows, provides
the conceptual ground, concerning the representation of quantum observables
algebras in terms of sheaves of structured families of commutative observables
algebras; this is based on a categorical construction of colimits over categories of
elements of presheaves of commutative algebras.

A natural transformation τ between the presheaves on the category of com-
mutative algebras P and R(AQ), τ : P −→ R(AQ), is a family τAC

indexed by
commutative algebras AC of AC for which each τAC

is a map of sets,

τAC
: P(AC)→HomAQ

(M(AC), AQ) ≡ R(AQ)(AC)

such that the diagram of sets below commutes for each commutative algebras
morphism u : ÁC → AC of AC .

From the perspective of the category of elements of the commutative algebras-
variable set P the map τAC

, defined above, is identical with the map:

τAC
: (AC, p)→HomAQ (M ◦GP(AC, p), AQ)

Subsequently such a τ may be represented as a family of arrows of AQ which
is being indexed by objects (AC, p) of the category of elements of the presheaf of
commutative algebras P, namely

{τAC
(p) : M(AC) → AQ}(AC,p)

Thus, according to the point of view provided by the category of elements of
P, the condition of the commutativity of the previous diagram, is equivalent to the
condition that for each arrow u the following diagram commutes.
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Consequently, according to the diagram above, the arrows τAC
(p) form

a cocone from the functor M ◦GP to the quantum observables algebra AQ.
The categorical definition of colimit, points to the conclusion that each such
cocone emerges by the composition of the colimiting cocone with a unique
arrow from the colimit LP to the quantum observables algebra object AQ.
Equivalently, we conclude that there is a bijection, natural in P and AQ, as
follows:

Nat(P,R(AQ)) ∼= HomAQ(LP, AQ)

The established bijective correspondence, interpreted functorially, says that
the functor of points R from AQ to presheaves given by

R(AQ) : AC �→HomAQ
(M(AC), AQ)

has a left adjoint L : SetsA
op

C → AQ, which is defined for each presheaf of com-
mutative algebras P in SetsA

op

C as the colimit

L(P) = Colim{G(P,AC)
GP−→ AC

M−→ AQ}
Consequently there is a pair of adjoint functors L � R as follows:

L : SetsA
op

C ←−−→ AQ : R

Thus we have constructed an adjunction which consists of the functors L and
R, called left and right adjoints with respect to each other respectively, as well as,
the natural bijection;

Nat(P,R(AQ)) ∼= HomAQ(LP, AQ)

The content of the adjunction between the topos of presheaves of commuta-
tive observables algebras and the category of quantum observables algebras can
be further developed, if we make use of the categorical construction of the colimit



334 Zafiris

defined above, as a coequalizer of a coproduct. We consider the colimit of any
functor F : I −→ AQ from some index category I to AQ, called a diagram of
a quantum observables algebra. Let µi : F(i) →�iF(i), i ∈ I , be the injections
into the coproduct. A morphism from this coproduct, χ : �iF(i) → AQ, is deter-
mined uniquely by the set of its components χi = χµi . These components χi are
going to form a cocone over F to the quantum observable vertex AQ only when,
for all arrows v : i −→ j of the index category I , the following conditions are
satisfied;

(χµj )F(v) = χµi

So we consider all F(domv) for all arrows v with its injections νv and
obtain their coproduct �v:i→jF(domv). Next we construct two arrows ζ and
η, defined in terms of the injections νv and µi , for each v : i −→ j by the
conditions

ζνv = µi

ηνv = µjF(v)

as well as their coequalizer χ



Quantum Observables Algebras and Abstract Differential Geometry 335

The coequalizer condition χζ = χη tells us that the arrows χµi form a
cocone over F to the quantum observable vertex AQ. We further note that since χ
is the coequalizer of the arrows ζ and η this cocone is the colimiting cocone for
the functor F : I → AQ from some index category I to AQ. Hence the colimit of
the functor F can be constructed as a coequalizer of coproducts according to

In the case considered the index category is the category of elements of
the presheaf of commutative observables algebras P and the functor M ◦GP

plays the role of the diagram of quantum observables algebras F : I −→ AQ.
In the diagram above the second coproduct is over all the objects (ξ, p) with
p ∈ P(AC) of the category of elements, while the first coproduct is over all the maps
v : (ÁC, ṕ) −→ (AC, p) of that category, so that v : ÁC −→ AC and the condition
pv = ṕ is satisfied. We conclude that the colimit LM (P ) can be equivalently
presented as the coequalizer:

The coequalizer presentation of the colimit shows that the Hom-functor
R(AQ) has a left adjoint which can be characterized categorically as the tensor
product −⊗AC

M.
In order to clarify the above observation, we forget for the moment that the

discussion concerns the category of quantum observables AQ, and we consider
instead the category Sets. Then the coproduct �pM(AC) is a coproduct of sets,
which is equivalent to the product P(AC)×M(AC) forAC ∈ AC . The coequalizer
is thus the definition of the tensor product P ⊗A of the set-valued functors:

P : Aop

C −→ Sets, M : AC −→ Sets

According to the diagram above for elements p ∈ P(AC), v : ÁC → AC and
q́ ∈ M(ÁC) the following equations hold:

ζ (p, v, q́) = (pv, q́), η(p, v, q́) = (p, vq́)

symmetric in P and M. Hence, the elements of the set P⊗AC
M are all of the form

χ (p, q). This element can be written as

χ (p, q) = p ⊗ q, p ∈ P(AC), q ∈ M(AC)
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Thus if we take into account the definitions of ζ and η above, we obtain

pv ⊗ q́ = p ⊗ vq́

Furthermore, if we define the arrows

kAC
: P⊗AC

M −→ AQ, lAC
: P(AC) −→ HomAQ

(M(AC), AQ)

they are related under the fundamental adjunction by

kAC
(p, q) = lAC

(p)(q), AC ∈ AC, p ∈ P(AC), q ∈ M(AC)

Here we consider k as a function on �AC
P(AC)×M(AC) with components

kAC
: P(AC)×M(AC) −→ AQ, satisfying the relation;

kÁC
(pv, q) = kAC

(p, vq)

in agreement with the equivalence relation defined above.
Now we replace the category Sets by the category of quantum observables

AQ under study. The element q in the set M(AC) is replaced by a generalized
element q : M(JC) → M(AC) from some modelling object M(JC) of AQ. Then
we consider k as a function �(AC,p)M(AC) −→ AQ with components k(AC,p) :
M(AC) → AQ for each p ∈ P(AC), that, for all arrows v : ÁC −→ AC satisfy;

k(ÁC,pv) = k(AC,p) ◦M(v)

Then the condition defining the bijection holding by virtue of the fundamental
adjunction is given by

k(AC,p) ◦ q = lAC
(p) ◦ q : M(JC) → AQ

This argument, being natural in the object M(JC), is determined by setting
M(JC) = M(AC) with q being the identity map. Hence, the bijection takes the
form k(AC,p) = lAC

(p), where k : �(AC,p)M(AC) −→ AQ, and lAC
: P(AC) −→

HomAQ
(M(AC), AQ).

The physical meaning of the adjunction between presheaves of commutative
observables algebras and quantum observables algebras is made transparent if
we consider that the adjointly related functors are associated with the process of
encoding and decoding information relevant to the structural form of their domain
and codomain categories. If we think of SetsA

op

C as the topos of variable commuta-
tive algebras modelled in Sets, and of AQ as the universe of quantum observable
structures, then the functor L : SetsA

op

C −→ AQ signifies a translational code of
information from the topos of commutative observables structures to the universe
of globally non-commutative ones, whereas the functor R : AQ −→ SetsA

op

C a
translational code in the inverse direction. In general, the content of the infor-
mation is not possible to remain completely invariant with respect to translating
transformations from one universe to another and back. However, there remain two
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alternatives for a variable set over commutative observables algebras P to exchange
information with a quantum observables algebra AQ. Either the content of infor-
mation is exchanged in non-commutative terms with P translating, represented as
the quantum morphism LP −→ AQ, or the content of information is exchanged
in commutative terms with AQ translating, represented correspondingly as the
natural transformation P −→ R(AQ). In the first case, from the perspective of AQ

information is being received in quantum terms, while in the second, from the
perspective of P information is being sent in commutative algebras terms. The
natural bijection then corresponds to the assertion that these two distinct ways
of communicating are equivalent. Thus, the fact that these two functors are ad-
joint, expresses a relation of variation regulated by two poles, with respect to the
meaning of the information related to observation. We claim that the totality of the
content of information included in quantum observables structures remains invari-
ant under commutative algebras encodings, corresponding to local commutative
observables algebras, if and only if the adjunctive correspondence can be appro-
priately restricted to an equivalence of the functorially correlated categories. In the
following sections we will show that this task can be accomplished by defining an
appropriate Grothendieck topology on the category of commutative observables
algebras, that, essentially permits the comprehension of a quantum observables
structure, as a sheaf of locally commutative ones over an appropriately specified
covering system. Subsequently, the categorical equivalence that will be established
in the sequel, is going to be interpreted, as the denotator of an informational in-
variance property, referring to the translational code of communication between
variable commutative observables algebras and globally non-commutative ones.

5. TOPOLOGIES ON CATEGORIES

5.1. Motivation

Our purpose is to show that the functor R from AQ to presheaves given by

R(AQ) : AC �→HomAQ
(M(AC), AQ)

sends quantum observables algebras AQ in AQ not just into presheaves, but
actually into sheaves for a suitable Grothendieck topology J on the category
of commutative observables algebras AC , so that the fundamental adjunction
will restrict to an equivalence of categories Sh(AC, J) ∼= AQ. From a physical
perspective the above can be understood as a topos theoretical formulation of
Bohr’s correspondence, or as a generalized “complementarity principle.”

We note at this point that the usual notion of sheaf, in terms of coverings,
restrictions, and collation, can be defined and used not just in the spatial sense,
namely on the usual topological spaces, but in a generalized spatial sense, on more
general topologies (Grothendieck topologies). In the usual definition of a sheaf on
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a topological space we use the open neighborhoodsU of a point in a spaceX; such
neighborhoods are actually monic topological maps U → X. The neighborhoods
U in topological spaces can be replaced by maps V → X not necessarily monic,
and this can be done in any category with pullbacks. In effect, a covering by open
sets can be replaced by a new notion of covering provided by a family of maps
satisfying certain conditions.

For an object AC of AC , we consider indexed families

S = {ψi : ACi → AC, i ∈ I }
of maps to AC (viz. maps with common codomain AC), and we assume that, for
each object AC of AC , we have a set �(AC) of certain such families satisfying
conditions to be specified later. These families play the role of coverings of AC ,
under those conditions. Based on such coverings, it is possible to construct the
analogue of the topological definition of a sheaf, where as presheaves on AC we
consider the functors P : Aop

C → Sets. According to the topological definition of
a sheaf on a space, we demand that for each open cover {Ui, i ∈ I } of some U ,
every family of elements {pi ∈ P(Ui)} that satisfy the compatibility condition on
the intersectionsUi ∩ Uj ,∀i, j , are pasted together, as a unique elementp ∈ P(U ).
Imitating the above procedure for any covering S of an objectAC , and replacing the
intersection Ui ∩ Uj by the pullback ACi×AC

ACj in the general case, according
to the diagram

we effectively obtain for a given presheaf P : Aop

C → Sets a diagram of sets as
follows
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In this case the compatibility condition for a sheaf takes the form: if {pi ∈
Pi , i ∈ I } is a family of compatible elements, namely satisfy pihij = pjgij ,∀i, j ,
then a unique element p ∈ P(AC) is being determined by the family such that
p · ψi = pi,∀i ∈ I , where the notational convention p · ψi = P(ψi)(p) has been
used . Equivalently, this condition can be expressed in the categorical terminology
by the requirement that in the diagram

the arrow e, where e(p) = (p · ψi, i ∈ I ) is an equalizer of the maps (pi, i ∈ I ) →
(pihij ; i, j ∈ I × I ) and (pi, i ∈ I ) → (pigij ; i, j ∈ I × I ), correspondingly.

The specific conditions that the elements of the set �(AC), or else the cover-
ings of AC , have to satisfy, naturally lead to the notion of a Grothendieck topology
on the category AC .

5.2. Grothendieck Topologies

We start our discussion by explicating the notion of a pretopology on the
category of commutative observables algebras AC .

A pretopology on AC is a function � where for each object AC there is a set
�(AC). Each �(AC) contains indexed families of AC-morphisms

S = {ψi : ACi → AC, i ∈ I }
of maps to AC such that the following conditions are satisfied:

(1) For each AC in AC , {idAC
} ∈ �(AC) ;

(2) IfCC → AC in AC and S = {ψi : ACi → AC, i ∈ I } ∈ �(AC) then {ψ1 :
CC×AC

ACi → AC, i ∈ I } ∈ �(CC). Note that ψ1 is the pullback in AC

of ψi along CC → AC ;
(3) If S = {ψi : ACi → AC, i ∈ I } ∈ �(AC), and for each i ∈ I , {ψi

ik :
CCik → ACi , k ∈ Ki} ∈ �(ACi), then {ψi

ik ◦ ψi : CCik → ACi → AC ,
i ∈ I ; k ∈ Ki} ∈ �(AC). Note that CCik is an example of a double in-
dexed object rather than the intersection of CCi and CCk .

The notion of a pretopology on the category of commutative algebras AC is
a categorical generalization of a system of set-theoretical covers on a topology
T, where a cover for U ∈ T is a set {Ui : Ui ∈ T, i ∈ I} such that ∪iUi = U .
The generalization is achieved by noting that the topology ordered by inclusion
is a poset category and that any cover corresponds to a collection of inclusion
arrows Ui → U . Given this fact, any family of arrows contained in �(AC) of a
pretopology is a cover, as well.

The passage from a pretopology to a categorical or Grothendieck topology on
the category of commutative unitalR-algebras takes place through the introduction
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of appropriate covering devices, called covering sieves. For an object AC in AC ,
an AC-sieve is a family R of AC-morphisms with codomain AC , such that if
CC → AC belongs to R and DC → CC is any AC-morphism, then the composite
DC → CC → AC belongs to R.

A Grothendieck topology on the category of commutative algebras AC , is a
system J of sets, J (AC), for each AC in AC , where each J (AC) consists of a set
of AC-sieves, (called the covering sieves), that satisfy the following conditions:

(1) For any AC in AC the maximal sieve {g : cod(g) = AC} belongs to J (AC)
(maximality condition).

(2) If R belongs to J (AC) and f : CC → AC is an AC-morphism, then
f ∗(R) = {h : CC → AC, f · h ∈ R} belongs to J (CC) (stability condi-
tion).

(3) If R belongs to J (AC) and S is a sieve on CC , where for each f : CC →
AC belonging to R, we have f ∗(S) in J (CC), then S belongs to J (AC)
(transitivity condition).

The small category AC together with a Grothendieck topology J, is called a
site. A sheaf on a site (AC, J) is defined to be any contravariant functor P : Aop

C →
Sets, satisfying the equalizer condition expressed in terms of covering sieves S
for AC , as in the following diagram in Sets:

If the above diagram is an equalizer for a particular covering sieve S, we
obtain that P satisfies the sheaf condition with respect to the covering sieve S.

A Grothendieck topos over the small category AC is a category which is
equivalent to the category of sheaves Sh(AC, J) on a site (AC, J). The site can be
conceived as a system of generators and relations for the topos. We note that a
category of sheaves Sh(AC, J) on a site (AC, J) is a full subcategory of the functor
category of presheaves SetsA

op

C .
The basic properties of a Grothendieck topos are the following:

(1) It admits finite projective limits; in particular, it has a terminal object, and
it admits fibered products.

(2) If (Bi)i∈I is a family of objects of the topos, then the sum
∐

i∈IBi exists
and is disjoint.

(3) There exist quotients by equivalence relations and have the same good
properties as in the category of sets.
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6. GROTHENDIECK TOPOLOGY ON AC

6.1. AC as a Generating Subcategory of AQ

We consider AC as a full subcategory of AQ, whose set of objects {ACi : i ∈
I }, with I an index set, generate AQ; that is, for any diagram in AQ,

the identity v ◦ w = u ◦ w, for every arrow w : ACi → AQ, and every ACi , im-
plies that v = u. We notice that, for every pair of different parallel morphisms of
AQ, with common domain, there is a separating morphism of AQ, with domain
in ACi ↪→ AQ and codomain the previous common domain. Equivalently, we can
say that the set of all arrows w : ACi → AQ, constitute an epimorphic family.
We may verify this claim, if we take into account the adjunction and observe that
objects of AQ are being constructed as colimits over categories of elements of
presheaves over AC . Since objects of AQ are constructed as colimits of this form,
whenever two parallel arrows

are different, there is an arrow l : ACi → AQ from some ACi in AC , such that
v ◦ l �= u ◦ l.

Since we assume that AC is a full subcategory of AQ we omit the explicit
presence of the coordinatization functor M in the subsequent discussion.

The consideration thatAC is a generating subcategory ofAQ points exactly to
the depiction of the appropriate Grothendieck topology on AC , that accomplishes
our purpose of comprehending quantum observables algebras as sheaves on AC .

We assert that a sieve S on a commutative algebraAC inAC is to be a covering
sieve ofAC , when the arrows s : CC → AC belonging to the sieve S together form
an epimorphic family in AQ. This requirement may be equivalently expressed in
terms of a map

GS :
∐

{s:CC→AC }∈S
CC → AC

being an epi in AQ.

6.2. The Grothendieck Topology of Epimorphic Families

We will show in the sequel, that covering sieves on commutative algebras in
AC , being epimorphic families in AQ, indeed define, a Grothendieck topology on
AC .

First of all we notice that the maximal sieve on each commutative algebraAC ,
includes the identity AC → AC , thus it is a covering sieve. Next, the transitivity
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property of the depicted covering sieves is obvious. It remains to demonstrate that
the covering sieves remain stable under pullback. For this purpose we consider the
pullback of such a covering sieve S on AC along any arrow h : AC

′ → AC in AC

The commutative algebras AC in AC generate the category of quantum
observables algebras AQ, hence, there exists for each arrow s : DC → AC in S, an
epimorphic family of arrows

∐
[AC]s → DC ×AC

ÁC , or equivalently {[AC]s j →
DC ×AC

ÁC}j , with each domain [AC]s a commutative algebra. Consequently the
collection of all the composites:

[AC]s j → DC ×AC
ÁC → ÁC

for all s : DC → AC in S, and all indices j together form an epimorphic family in
AQ, that is contained in the sieve h∗(S), being the pullback of S along h : AC →
ÁC . Therefore the sieve h∗(S) is a covering sieve.

It is important to construct the representation of covering sieves within the
category of commutative observables algebras AC . This is possible, if we first ob-
serve that for an objectCC ofAC , and a covering sieve for the defined Grothendieck
topology on AC , the map

GS :
∐

(s:CC→AC )∈SCC → AC

being an epi in AQ, can be equivalently presented as the coequalizer of its kernel
pair, or else the pullback of GS along itself

Furthermore, using the fact that pullbacks in AQ preserve coproducts, the
epimorhic family associated with a covering sieve on CC , admits the following
coequalizer presentation
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Moreover, sinceAC is a generating subcategory ofAQ, for each pair of arrows
s : DC → CC and ś : D́C → CC in the covering sieve S on the commutative
algebra CC , there exists an epimorphic family {AC → D́C×CC

DC}, such that
each domain AC is a commutative algebra object in AC .

Consequently, each element of the epimorphic family, associated with a
covering sieve S on a commutative algebra CC is represented by a commutative
diagram in AC of the following form:

At a further step we may compose the representation of epimorphic fam-
ilies by commutative squares in AC , obtained previously, with the coequalizer
presentation of the same epimorphic families. The composition results in a new
coequalizer diagram in AC of the following form:

where the first coproduct is indexed by all AC in the commutative diagrams in
AC , representing elements of epimorphic families.

6.3. The J-Sheaf R(AQ)

For each quantum observables algebra AQ in AQ, we consider the con-
travariant Hom-functor R(AQ) = HomAQ

(−, AQ) in SetsA
op

C . If we apply this
representable functor to the latter coequalizer diagram we obtain an equalizer
diagram in Sets as follows:

where the first product is indexed by all AC in the commutative diagrams in AC ,
representing elements of epimorphic families.

The equalizer in Sets, thus obtained, says explicitly that the contravariant
Hom-functor R(AQ) = HomAQ(−, AQ) in SetsA

op

C , satisfies the sheaf condition
for the covering sieve S. Moreover, the equalizer condition holds, for every cov-
ering sieve in the Grothendieck topology of epimorphic families.
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By rephrasing the above, we conclude that the representable Hom-functor
R(AQ) is a sheaf for the Grothendieck topology of epimorphic families on the
category of commutative observables algebras.

7. EQUIVALENCE OF THE TOPOS Sh (AC, J) WITH AQ

We claim, that if the functor R from AQ to presheaves

R(AQ) : AC �→HomAQ
(M(AC), AQ)

sends quantum observables algebras AQ in AQ not just into presheaves, but
into sheaves for the Grothendieck topology of epimorphic families, J, on the
category of commutative observables algebras AC , the fundamental adjunc-
tion restricts to an equivalence of categories Sh(AC, J) ∼= AQ. Thus, AQ is,
in effect, a Grothendieck topos. Hence, in an epigrammatic manner we can
assert that; appropriately sheafifying in the Grothendieck sense is equiva-
lent to quantizing, equivalently, quantizing means, in effect, sheafifying à la
Grothendieck.

7.1. Covering Sieves on Quantum Observables Algebras

If we consider a quantum observables algebra AQ, and all quantum algebraic
morphisms of the form ψ : EC → AQ, with domains EC , in the generating sub-
category of commutative observables algebras AC , then the family of all these
maps ψ , constitute an epimorphism:

T :
∐

(EC∈AC ,ψ :EC→AQ)
EC → AQ

We notice that the quantum algebraic epimorphism T is actually the same as
the map,

T :
∐

(EC∈AC ,ψ :M(EC )→AQ)
M(EC) → AQ

since the coordinatization functor M is, by the fact that AC is a full subcategory
of AQ, just the inclusion functor M : AC ↪→ AQ.

Subsequently, we may use the same arguments, as in the discussion of the
Grothendieck topology of epimorphic families of the previous section, in order to
assert that the epimorphism T can be presented as a coequalizer diagram of the
form [DI] in AQ as follows:
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where the first coproduct is indexed by all ν, representing commutative diagrams
in AQ, of the form:

where AC , EC , ÉC are objects in the generating subcategory AC of AQ.
We say that a sieve on a quantum observables algebra defines a covering

sieve by objects of its generating subcategory AC , when the quantum algebraic
morphisms belonging to the sieve define an epimorphism

T :
∐

(EC∈AC ,ψ :A(EC )→AQ)
M(EC) → AQ

In this case the epimorphic families of quantum algebraic morphisms con-
stituting covering sieves of quantum observables algebras fit into coequalizer
diagrams of the latter form [DI].

From the physical point of view covering sieves of the form defined above,
are equivalent with commutative algebras localization systems of quantum ob-
servables algebras. These localization systems filter the information of quantum
observabes algebras, through commutative algebras domains, associated with pro-
cedures of measurement of observables. We will discuss localizations systems in
detail, in order to unravel the physical meaning of the requirements underlying
the notion of Grothendieck topology, and subsequently, the notion of covering
sieves defined previously. It is instructive to begin with the notion of a system of
prelocalizations for a quantum observables algebra.

A system of prelocalizations for a quantum observables algebraAQ inAQ is
a subfunctor of the Hom-functor R(AQ) of the form S : Aop

C → Sets, namely, for all
AC in AC it satisfies S(AC) ⊆ [R(AQ)](AC). Hence, a system of prelocalizations
for a quantum observables algebra AQ in AQ is an ideal S(AC) of quantum
algebraic morphisms from commutative algebras domains of the form

ψAC
: M(AC) −→ AQ, AC ∈ AC

such that {ψAC
: M(AC) −→ AQ in S(AC), and M(v) : M(ÁC) → M(AC) in AQ

for v : ÁC → AC in AC , implies ψAC
◦M(v) : M(ÁC) −→ AQ in S(AC)}.

The introduction of the notion of a system of prelocalizations of a quantum
observabes algebra has a sound operational physical basis: In every concrete exper-
imental context, the set of observables that can be observed in this context forms
a unital commutative algebra. The above remark is equivalent to the statement
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that a measurement-induced commutative algebra of observables serves as a local
reference frame, in a topos-theoretical environment, relative to which a measure-
ment result is being coordinatized. Adopting the aforementioned perspective on
quantum observables algebras, the operation of the Hom-functor R(AQ) is equiv-
alent to depicting an ideal of algebraic morphisms which are to play the role of
local coverings of a quantum observables algebra, by coordinatizing commutative
algebras related with measurement situations. From a geometrical viewpoint, we
may thus characterize the maps ψAC

: M(AC) −→ AQ, AC ∈ AC , in a system
of prelocalizations for a quantum observables algebra AQ, as a cover of AQ by an
algebra of commutative observables.

Under these intuitive identifications, we say that a family of commutative do-
mains covers ψAC

: M(AC) −→ AQ, AC ∈ AC , is the generator of the system
of prelocalization S, iff this system is the smallest among all that contains that
family. It is evident that a quantum observables algebra can have many systems of
measurement prelocalizations, that, remarkably, form an ordered structure. More
specifically, systems of prelocalizations constitute a partially ordered set, under in-
clusion. Furthermore, the intersection of any number of systems of prelocalization
is again a system of prelocalization.We emphasize that the minimal system is the
empty one, namely S(AC) = ∅ for all AC ∈ AC , whereas the maximal system is
the Hom-functor R(AQ) itself, or equivalently, all quantum algebraic morphisms
ψAC

: M(AC) −→ AQ, that is the set HomAQ
(M(AC), AQ).

The transition from a system of prelocalizations to a system of localiza-
tions for a quantum observables algebra, can be effected under the restriction
that, certain compatibility conditions have to be satisfied on the overlap of the
coordinatizing commutative domain covers. In order to accomplish this, we use a
pullback diagram in AQ as follows:
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The pullback of the commutative domains covers ψAC
: M(AC) −→

AQ,AC ∈ AC and ψÁC
: M(ÁC) −→ AQ, ÁC ∈ AC with common codomain the

quantum observables algebra AQ, consists of the object M(AC)×AQ
M(ÁC) and

two arrows ψACÁC
and ψÁCAC

, called projections, as shown in the above diagram.
The square commutes and, for any object T and arrows h, g that make the outer
square commute, there is a unique u : T −→ M(AC)×AQ

M(ÁC) that makes the
whole diagram commutative. Hence, we obtain the condition:

ψÁC
◦ g = ψAC

◦ h
We notice that if ψAC

and ψÁC
are 1-1, then the pullback is isomorphic with

the intersection M(AC) ∩M(ÁC). Then, we can define the pasting map, which is
an isomorphism, as follows:

WAC,ÁC
: ψÁCAC

(M(AC)×AQ
M(ÁC)) −→ ψACÁC

(M(AC)×AQ
M(ÁC))

by putting

WAC,ÁC
= ψACÁC

◦ ψ−1
ÁCAC

Then we have the following conditions: (“pull-back compatibility”)

WAC,AC
= 1AC

with 1AC
:= idAC

WAC,ÁC
◦W

ÁC,
´́AC
= W

AC,
´́AC

if M(AC) ∩M(ÁC) ∩M( ´́AC) �= 0

WAC,ÁC
= W−1

ÁC,AC
if M(AC) ∩M(ÁC) �= 0

The pasting map provides the means to guarantee that ψÁCAC
(M(AC)×AQ

M(ÁC))
and ψACÁC

(M(AC)×AQ
M(ÁC)) are going to cover the same part of a quantum

observables algebra in a compatible way.
Given a system of measurement prelocalizations for a quantum observables

algebra AQ ∈ AQ, we call it a system of localizations iff the above compatibility
conditions are being satisfied.

The compatibility conditions established, provide the necessary relations
for understanding a system of measurement localizations for a quantum observ-
ables algebra as a structure sheaf or sheaf of coefficients from local commutative
covering domains of observables algebras. This is related to the fact that sys-
tems of measurement localizations are actually subfunctors of the representable
Hom-functor R(AQ) of the form S : Aop

C → Sets, namely, all AC in AC satisfy
S(AC) ⊆ [R(AQ)](AC). In this sense the pullback compatibility conditions ex-
press gluing relations on overlaps of commutative domains covers and convert a
presheaf subfunctor of the Hom-functor (system of prelocalizations) into a sheaf
for the Grothendieck topology specified.
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7.2. Unit and Counit of the Adjunction

We focus again our attention in the fundamental adjunction and investigate
the unit and the counit of it. For any presheaf P ∈ SetsA

op

C , we deduce that the unit
δP : P −→ HomAQ(M( ),P⊗AC

M) has components:

δP(AC) : P(AC) −→ HomAQ
(M(AC),P⊗AC

M)

for each commutative algebra objectAC ofAC . If we make use of the representable
presheaf y[AC], we obtain:

δy[AC ] : y[AC] → HomAQ(M( ), y[AC]⊗AC
M)

Hence, for each objectAC of AC the unit, in the case considered, corresponds
to a map,

M(AC) → y[AC]⊗AC
M

But, since

y[AC]⊗AC
M ∼= M ◦Gy[AC ](AC, 1AC

) = M(AC)

the unit for the representable presheaf of commutative algebras, which is a sheaf
for the Grothendieck topology of epimorphic families, is clearly an isomorphism.
By the preceding discussion we can see that the diagram commutes

Thus, the unit of the fundamental adjunction, referring to the representable
sheaf y[AC] of the category of commutative observables algebras, provides a map
(quantum algebraic morphism) M(AC) −→ y[AC]⊗AC

M, which is an isomor-
phism.

On the other side, for each quantum observables algebra object AQ of AQ,
the counit is

εAQ
: HomAQ(M( ), AQ)⊗AC

M −→ AQ
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The counit corresponds to the vertical map in the following coequalizer
diagram [DII]:

where the first coproduct is indexed by all arrows v : AC → EC , with AC , EC

objects of AC , whereas the second coproduct is indexed by all objects AC in AC

and arrows ψ : M(EC) → AQ, belonging to a covering sieve of AQ by objects of
its generating subcategory.

It is important to notice the similarity in form of diagrams [DI] and [DII].
Based on this observation, it is possible to prove that if the domain of the counit of
the adjunction is restricted to sheaves for the Grothendieck topology of epimorphic
families on AC , then the counit defines a quantum algebraic isomorphism;

εAQ
: HomAQ

(M( ), AQ)⊗AC
M � AQ

In order to substantiate our thesis, we inspect diagrams [DI] and [DII], ob-
serving that it is enough to prove that the pairs of arrows (ζ, η) and (y1, y2) have
isomorphic coequalizers, since, then, the counit is obviously an isomorphism.
Thus, we wish to show that a covering sieve of a quantum event algebra

T :
∐

(EC∈AC,ψ :M(EC )→AQ)
M(EC) → AQ

is the coequalizer of (y1, y2) iff it is the coequalizer of (ζ, η). In the following
discussion, we may omit the explicit presence of the inclusion functor M, for the
same reasons stated previously.

We consider a covering sieve of a quantum observables algebraAQ, consisting
of quantum algebraic morhisms T(EC,ψ), that together constitute an epimorphic
family in AQ. We observe that the condition T · y1 = T · y2 is equivalent to the
condition [CI] as follows:

T(EC,ψ) · l = T(ÉC ,ψ́) · k
for each commutative square ν. Furthermore, the condition T · ζ = T · η is equiv-
alent to the condition [CII] as follows:

T(EC,ψ) · u = T(ÉC ,ψ ·u)

for every commutative algebras morphism u : ÉC → EC , with AC , EC objects
of AC and ψ : EC → AQ, belonging to a covering sieve of AQ by objects of its
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generating subcategory. Therefore, our thesis is proved if we show that [CI ] ⇔
[CII ].

On the one hand, T · ζ = T · η, implies for every commutative diagram of
the form ν:

the following relations:

T(EC,ψ) · l = T(AC,ψ ·l) = T(AC,ψ́ ·k) = T(ÉC ,ψ́) · k
Thus [CI ] ⇒ [CII ]

On the other hand, T · y1 = T · y2, implies that for every commutative alge-
bras morphism u : ÉC → EC , with AC , EC objects of AC and ψ : EC → AQ, the
diagram of the form ν

commutes and provides the condition

T(EC,ψ) · u = T(ÉC ,ψ ·u)

Thus [CI ] ⇐ [CII ].
Consequently, the pairs of arrows (ζ, η) and (y1, y2) have isomorphic coequal-

izers, proving that the counit of the fundamental adjunction restricted to sheaves
for the Grothendieck topology of epimorphic families on AC is an isomorphism.

8. ABSTRACT DIFFERENTIAL GEOMETRY
IN THE QUANTUM REGIME

8.1. The Quantum Quotient Algebra Sheaf of Coefficients

Having at our disposal the sheaf theoretical representation of a quantum
observables algebra through the counit isomorphism established above, for the
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Grothendieck topology of epimorphic families of covers from local commuta-
tive algebras domains of observables, we may attempt to apply the methodology
of Abstract (alias, Modern) Differential Geometry (ADG), in order to set up a
differential geometric mechanism suited to the quantum regime of observables
structures.

First of all we notice that the transition from the classical to the quan-
tum case is expressed in terms of the relevant arithmetics used, as a transition
from a commutative algebra of observables presented as a sheaf, if localized
over a measurement topological space, to a globally non-commutative algebra of
observables, presented correspondingly as a sheaf of locally commutative alge-
bras of coefficients for the Grothendieck topology specified over the category of
commutative subalgebras of the former. It is instructive to remind that the latter
sheaf theoretical representation is established according to the counit isomorphism
by

εAQ
: R(AQ)⊗AC

M � AQ

Furthermore, we may give an explicit form of the elements of R(AQ)⊗AC
M

according to the coequalizer of coproduct definition of the above tensor
product

According to the diagram above for elements ψAC
∈ R(AQ)(AC), v : ÁC →

AC and ξ́ ∈ M(ÁC), the following equations hold:

ζ (ψAC
, v, ξ́ ) = (ψAC

v, ξ́ ), η(ψ, v, ξ́ ) = (ψAC
, vξ́ )

symmetric in R(AQ) and M. Hence the elements of R(AQ)⊗AC
M are all of the

form χ (ψAC
, ξ ). This element can be written as

χ (ψAC
, ξ ) = ψAC

⊗ ξ, ψAC
∈ R(AQ)(AC), ξ ∈ M(AC)

Thus if we take into account the definitions of ζ and η above, we obtain

ψAC
v ⊗ ξ́ = ψAC

⊗ vξ́

We conclude that R(AQ)⊗AC
M is actually the quotient of

∐
(AC,ψAC

)M(AC) by
the smallest equivalence relation generated by the above equations. Moreover,
if there exists AD in AC and homomorphisms w : AD → AC , v : AD → ÁC ,
such that: wξ̄ = ξ , vξ̄ = ξ́ , and ψAC

w = ψÁC
, ξ ∈ M(AC), ξ́ ∈ M(ÁC), ξ̄ ∈

M(AD), ψAC
∈ R(AQ)(AC), ψ́AC

∈ R(AQ)(ÁC) then the identification equations
take the form

ψAC
⊗ ξ = ψÁC

⊗ ξ́
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If we denote by lQ(AC) the ideal generated by the equivalence relation, cor-
responding to the above identification equations, for each AC in AC , we conclude
that locally, in the Grothendieck topology defined, an element of R(AQ)⊗AC

M
can be written in the form:

ψAC
⊗ ξ = (ψAC

, ξ )+ lQ(AC) ≡ [ψAC
⊗ ξ ]

Subsequently a quantum observables algebra admits a sheaf theoretical rep-
resentation in terms of an algebra sheaf that, locally, that is, over a particular cover,
has the quotient form;

R(AQ)(AC)⊗AC
M(AC) = [R(AQ)(AC)×M(AC)]/lQ(AC)

In this sense, the quantum arithmetics can be described locally, that is, over
a particular cover in a localization system of a quantum observables algebra, as
an algebra K(AC) := [R(AQ)(AC)×M(AC)]/lQ(AC). The latter can be further
localized over a “topological measurement space,” categorically dual to the com-
mutative observables algebra AC , that serves as the algebra sheaf of a differential
triad � = (K(AC), δK(AC ),�(K(AC))), attached to this particular cover. The ap-
propriate specification of the K(AC)-module �(K(AC)) is going to be the subject
of a detailed discussion in what follows: From a physical viewpoint a reason-
able choice would be the identification of �(K(AC)) with the K(AC)-module
�(K(AC)) of all localized quotient commutative algebra of observables sheaf
endomorphisms ∇K(AC ) : K(AC) → K(AC), which are R-linear and satisfy the
Leibniz rule (“derivations”). Thus the differential structure on a local commuta-
tive domain cover, ψAC

: M(AC) ↪→ AQ, AC in AC , being an inclusion, would be
naturally defined in the following manner:

(ψAC
, ξ )+ lQ(AC) �→ (ψAC

,∇AC
ξ )+ lQ(AC)

where ∇AC
:= ∇ : AC → AC is an AC-valued derivation of AC , which we call

differential variation of first-order, or equivalently differential 1-variation, ap-
plied to the observable ξ . In the sequel, we will specify the necessary con-
ditions required for the existence of ∇ for a general commutative algebra of
observables AC .

In this sense, we may form the conclusion that locally in the Grothendieck
topology specified, there exists a naturally defined differential operator, that has
the following form over a particular cover for each AC in AC :

δK(AC )(ψAC
⊗ ξ ) := (ψAC

,∇AC
ξ )+ lQ(AC)

At this point we remind that a covering sieve, or equivalently, localization
system of a quantum observables algebra contains epimorphic families from local
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commutative domain covers, such that each element associated with a covering
sieve is represented by a commutative diagram of the form

where AC , EC , ÉC are objects in the generating subcategory AC of AQ.
Moreover they fit all together in a coequalizer diagram

where the first coproduct is indexed by all ν, representing commutative diagrams
in AQ of the form above.

Thus, having specified a differential triad � = (K(AC), δK(AC ),�(K(AC)))
attached to each particular cover, we may specify a diagram of differential triads
that, in turn corresponds to an element associated with an epimorphic covering
sieve in the Grothendieck topology defined on AC . This diagram of differential
triads, together with the corresponding coequalizer of coproduct diagram, contain
all the information necessary for the set-up of the differential geometric mechanism
suited to the quantum regime. Hence, the transition from the classical to the
quantum case amounts to a change of perspective from a single differential triad to
a diagram of differential triads interlocking in such a way that information related
to observation in different covering domains is compatible on their overlaps.

8.2. Differential 1-variations

A derivation ∇ of a commutative observables algebra AC is an R-linear
endomorphism of the R-commutative arithmetic AC , denoted by ∇ : AC → AC ,
that satisfies the Leibniz rule:

∇(ζ ξ ) = ζ∇(ξ )+ ξ∇(ζ )

for all ζ , ξ belonging to AC .
We also define the set of all derivations ofAC , denoted byG(AC). It is obvious

that G(AC) is a left AC-module. Remarkably, G(AC) can be also endowed with
a Lie algebra structure if we define an R-linear skew-symmetric operator, called
commutator of derivations in G(AC) as follows:

For any two derivations ∇1, ∇2 ∈ G(AC) their commutator, denoted as
[∇1,∇2], is given by;

[∇1,∇2] = ∇1 ◦ ∇2 −∇2 ◦ ∇1
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We can easily check that the commutator [∇1,∇2] is skew-symmetric, and
also, it is a derivation belonging toG(AC). Furthermore, the commutator derivation
satisfies the Jacobi identity as follows;

[∇1, [∇2,∇3]] = [[∇1,∇2],∇3]+ [∇2, [∇1,∇3]]

Actually if we consider ∇ ∈ G(AC), and also, ζ, ξ ∈ AC , then we define;

(
←−
ζ ∇)(ξ ) := ζ (∇(ξ ))

It is clear that
←−
ζ ∇ ∈ G(AC), thus G(AC) is a left AC-module. We notice

that we can also define a right AC-module structure on G(AC) according to the
rule;

(
−→
ζ ∇)(ξ ) := ∇(ζ ξ )

Now, we may define a commutator as follows;

[ζ̂ ,∇](ξ ) := (
−→
ζ ∇ −←−ζ ∇)(ξ ) = (∇(ζ ))ξ

Thus, for any ζ ∈ AC , we can define the Lie derivative operator;

Lζ : G(AC) → G(AC)

Lζ (∇) := [ζ̂ ,∇]

Moreover, if we consider operators Lζ , Lη, we can easily show that they
commute, and furthermore, the identity below is being satisfied;

(Lη ◦ Lζ )(∇) = 0

for every ζ , η ∈ AC . Thus we can state the following:
If we consider a commutative observables algebra AC , then an R-linear

morphism ∇ ∈ G(AC) is called a differential 1-variation if for all η, ζ ∈ AC , and
corresponding commutator operators Lη, Lζ , the following identity holds:

(Lη ◦ Lζ )(∇) = 0

In the case that the classical commutative arithmeticAC representsC∞(X,R),
then the above identity is satisfied and differential 1-variations are tautosemous
with the usual fist-order linear differential operators of the form ∇ = κi∂i + λ,
where κi, λ ∈ C∞(X,R).

The fact that the set of all derivations of AC , say G(AC), has an AC-module
structure, motivates the definition of an M-valued derivation of an observables
algebra AC , for an arbitrary AC-module M as follows:

An M-valued derivation ∇M of an observables algebra AC is an R-linear
morphism, denoted by ∇M : AC → M , that satisfies the Leibniz rule:

∇M (ζ ξ ) = ζ∇M (ξ )+ ξ∇M (ζ )



Quantum Observables Algebras and Abstract Differential Geometry 355

for all ζ , ξ belonging to AC . If we consider ∇M ∈ G(M), and also, ζ, ξ ∈ AC ,
then we have;

(
←−
ζ ∇M )(ξ ) := ζ (∇M (ξ ))

It is clear that
←−
ζ ∇M ∈ G(M), thusG(M) is a leftAC-module. We also notice

that we can define a right AC-module structure on G(M) as follows;

(
−→
ζ ∇M )(ξ ) := ∇M (ζ ξ )

Now, we can define a commutator according to;

[ζ̂ ,∇M ](ξ ) := (
−→
ζ ∇M −←−ζ ∇M )(ξ ) = (∇M (ζ ))ξ

Thus, for any ζ ∈ AC , we can again define the Lie derivative operator, as
follows;

Lζ : G(M) → G(M)

Lζ (∇M ) := [ζ̂ ,∇M ]

Furthermore, if we consider operators Lζ , Lη, for every ζ , η ∈ AC , they
commute, and also, satisfy the identity;

(Lη ◦ Lζ )(∇M ) = 0

In this sense, we can state the criterion of identification of M-valued deriva-
tions, in an analogous manner as in 8.2, as follows:

If we consider the set S(M), consisting of R-linear morphisms of a commu-
tative observables algebra AC into an arbitrary AC-module M , then the elements
of S(M) are identified as M-valued derivations, ∇M , of the algebra AC , if for any
ζ , η ∈AC , and corresponding Lie derivative operators Lζ , Lη from S(M) to itself,
the following identity holds:

(Lη ◦ Lζ )(∇M ) = 0

Furthermore, it is instructive to notice that, for anR-linear morphism θ ofAC-
modules, M , N ∈ S(M,N ); where S(M,N ) denotes the bimodule of all R-linear
morphisms of AC-modules M and N , we can analogously define a commutator
operator L̂ζ , for every ζ ∈ AC , according to;

L̂ζ : S(M,N ) → S(M,N )

such that;

L̂ζ (θ ) := [ζ̂ , θ ] = (
−→
ζ θ −←−ζ θ )
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Thus, we can consider commutator operators L̂η, L̂ζ , for η, ζ ∈ AC , and
also, take their composition, denoted by L̂η ◦ L̂ζ . Then we can give the following
definition:

We consider an observables algebra AC , and let M , N be AC-modules. An
R-linear morphism θ ∈ S(M,N ) is called a differential 1-variation induced by
the action ofM onN if for all η, ζ ∈AC , and corresponding commutator operators
L̂η, L̂ζ , the following identity holds:

(L̂η ◦ L̂ζ )(θ ) = 0

Let us denote the set of all differential 1-variations induced by the action of
M on N , by V 1

AC
(M,N ). The set V 1

AC
(M,N ) can be endowed with a bimodule

structure, where multiplication from the left by elements ζ of AC is denoted by←−
ζ θ , whereas multiplication from the right is denoted by

−→
ζ θ , according to;

(
←−
ζ θ )(m) := ζ · θ (m)

(
−→
ζ θ )(m) := (θ ◦ ζ )(m)

for every ζ ∈ AC . We also denote by V̂ 1
AC

(M,N ) the bimodule structure, whereas

by
←−
V

1
AC

(M,N ) and
−→
V

1
AC

(M,N ), the left and right AC-module structures, re-
spectively. Moreover, the bimodule of all differential 1-variations, induced by the
action of AC , being an AC-module over itself, on N , is denoted by V̂ 1

AC
(N ). We

also denote by
←−
V

1
AC

(N ) the left AC-module structure, whereas by
−→
V

1
AC

(N ) the
right AC-module structure.

8.3. Left Modules of 1-Forms

From now on, we shall focus our attention to the left module structure alone.

The correspondence N �→ ←−
V

1
AC

(M,N ) if applied to all objects and arrows of the
category of AC-modules M(AC ), specifies a covariant functor from the category
of AC-modules to themselves;

←−
V

1

AC
(M,−) : M(AC ) →M(AC )

Furthermore, we define the R-linear map;

l : M → (AC)⊗RM

by setting;

l(m) = 1⊗m
where m ∈M . The codomain of the map l is called the tensor product of the left
AC-modules AC and M , and most significantly it is an AC-module itself, where



Quantum Observables Algebras and Abstract Differential Geometry 357

the left multiplication is specified by;
←−
ζ (ξ ⊗m) := (ζ ξ )⊗m

where ζ , ξ ∈ AC , and m ∈ M . The tensor product (AC)⊗RM , can be further
endowed with a right AC-module structure defined by

−→
ζ (ξ ⊗m) := ξ ⊗ (ζm)

Thus, we may form a commutator operator for every ζ ∈ AC defined as
follows;

L̂ζ : (AC)⊗RM → (AC)⊗RM

L̂ζ (l(m)) := [ζ̂ , l(m)] = (
−→
ζ l(m)−←−ζ l(m))

Subsequently, we can consider for η, ζ ∈ AC , the corresponding commutator
operators L̂η, L̂ζ , and also, take their composition. Consequently, the elements
((L̂η ◦ L̂ζ )(l))(m) generate a submodule of the tensor product (AC)⊗RM , denoted
by M . Moreover, we may form a quotient AC-module corresponding to each
AC-module M , defined as follows;

π (M) := (
(AC)⊗RM

)
/M

It is straightforward to see, if we take into account the definition of the
quotient AC-module M , that the map;

� : M → π (M)

defined by the assignment

m �→ �(m) := (l(m))mod(M) := [l(m)]

for each AC-module M , is a differential 1-variation.
Moreover, the above map for each AC-module M , gives rise to a covariant

functor

� : M(AC ) →M(AC )

(i) Its action on a AC-module in M(AC ) is given by;

�(M) := π (M)

(ii) Its action on a morphism of AC-modules α : M → N , for [l(m)] ∈ π (M)
is given by;

�(α) : �(M) → �(N )

�(α)([l(m)]) = α ◦ [l(m)]
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Now, we consider that θ is a differential 1-variation, that is θ ∈ ←−V AC
(M,N ).

Obviously,
←−
V AC

(M,N ) ⊂ HomR(M,N ), so we may further consider the mor-
phism;

χ : HomAC
(
(
(AC)⊗RM

)
, N) → HomR(M,N )

defined by the relation;

χ (τ ) = τ ◦ l
Next, we apply the commutator operator L̂ζ on χ (τ ), taking into account that

τ is an AC-morphism, as follows;

L̂ζ (χ (τ )) = L̂ζ (τ ◦ l) = τ ◦ L̂ζ (l) = χ (L̂ζ (τ ))

Consequently, χ (τ ) ∈ HomR(M,N ), is a differential 1-variation, iff

L̂ζ (χ (τ )) = 0

or equivalently, iff;

τ (M) = 0

Thus, by restricting the codomain of χ to elements being qualified as differ-
ential 1-variations, we obtain the following isomorphism;

ι : HomAC
(�(M), N) →←−

V AC
(M,N )

Its inverse is denoted by ε and is subsequently defined as;

ε :
←−
V AC

(M,N ) → HomAC
(�(M), N)

θ �→ εθ

θ = εθ ◦�
according to the diagram below;

Hence, we can draw the conclusion that the covariant functor corresponding
to a left AC-module M in M(AC );

←−
V AC

(M,−) : M(AC ) →M(AC )
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is being representable by the left AC-module in M(AC );

�(M) := (
(AC)⊗RM

)
/M

according to the established isomorphism;
←−
V AC

(M,N ) ∼= HomAC
(�(M), N)

As a consequence, if we consider the case M = AC , we obtain;
←−
V AC

(N ) ∼= HomAC
(�(AC), N)

where the map,

� : AC → �(AC)

is defined by the assignment

ζ �→ �(ζ ) = [l(ζ )] = [1⊗ ζ ]

Now, we may form the quotient left AC-module �1(AC) defined as follows;

�1(AC) := �(AC)/Im(�)

where Im(�) denotes the submodule of �(AC) depicted by the image of the
morphism �. There exists a natural projection mapping defined by;

pr : �(AC) → �1(AC)

So, we may form the composition;

dAC
: AC → �1(AC)

dAC
:= pr ◦�

Then, dAC
is clearly an �1(AC)-valued derivation of AC .

In a suggestive terminology, dAC
is called a first order differential of the

observables algebra AC , whereas the left AC-module �1(AC) is characterized as
the module of 1-forms ofAC . In this sense, a differential 1-variation is tautosemous
with a first order differential of AC , evaluated on 1-forms in �1(AC).
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Consequently, we may further consider the following commutative diagram;

We conclude that for any N -valued derivation θ̃ ≡ ∇N of AC , there ex-
ists a uniquely defined morphism ε ˜[θ] : �1(AC) → N making the diagram above
commutative.

In functorial language the statement above means that the covariant functor
of left AC-modules valued derivations of AC;

←−∇ AC
: M(AC ) →M(AC )

is being representable by the left AC-module of 1-forms in M(AC );

�1(AC) := �(AC)/Im(�)

for every commutative arithmetic AC , according to the isomorphism;
←−∇ AC

(N ) ∼= HomAC
(�1(AC), N)

Consequently, the conclusion stated above resolves completely the issue
related with the appropriate specification of the K(AC)-module �(K(AC)) in
8.1. If we remind the relevant discussion, it has been initially conjectured that
from a physical viewpoint, a reasonable choice would be the identification of
�(K(AC)) with the K(AC)-module �(K(AC)) of all derivations, that is localized
arithmetics endomorphisms ∇K(AC ) : K(AC) → K(AC), which are R-linear and
satisfy the Leibniz rule. From the isomorphism established above, the covariant
functor of K(AC)-modules valued derivations of K(AC) is being representable by
the K(AC)-module of 1-forms in MK(AC ); Hence, we finally identify the K(AC)-
module�(K(AC)) in 8.1 with the K(AC)-module of 1-forms�1(K(AC)) and from
now on we use them interchangeably.

Summarizing and recapitulating, we state that the differential structure on
a local commutative domain cover, ψAC

: M(AC) ↪→ AQ, AC in AC , being an
inclusion, is defined as follows:

(ψAC
, ξ )+ lQ(AC) �→ (ψAC

, dAC
ξ )+ lQ(AC) ≡ [(ψAC

, dAC
ξ )]

Hence, locally in the Grothendieck topology specified, there exists a naturally
defined differential operator, that has the following form over a particular cover
for each AC in AC ;

dK(AC )(ψAC
⊗ ξ ) := (ψAC

, dAC
ξ )+ lQ(AC) ≡ [(ψAC

, dAC
ξ )]
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8.4. Non-Local Information Encoded in Ideals

If we focus our attention to a localization system of compatible overlapping
commutative domain covers, we can specify accurately the information encoded
in the ideal lQ(AC) in K(AC), where ψAC

: M(AC) ↪→ AQ, AC in AC , stands
for a local cover belonging to this system. More concretely the ideal lQ(AC)
contains information about all the other covers in the localization system that
are compatible in pullback diagrams over AQ with the specified one. This is
evident if we inspect the isomorphism pasting map WAC,ÁC

= ψACÁC
◦ ψ−1

ÁCAC
and

noticing that its existence guarantees the satisfaction of the relations needed, as
has been explained previously, for the establishment of the identification equations
ψAC

⊗ ξ = ψÁC
⊗ ξ́ in the localization system. Thus, essentially the information

encoded in the ideal lQ(AC) refers to all other local covers that are compatible with
the specified one in the localization system. This is a unique peculiar characteristic
of the quantum arithmetics as substantiated in the form of the algebras K(AC).
Remarkably, each one of them in a covering sieve contains information about
all the others in the same sieve that can be made compatible, and explicitly,
the content of this information is encoded in the structure of an ideal. This is
a crucial observation and pertains to discussions of non-locality characterizing
the behavior of quantum systems. In our perspective the assumed paradoxical
behaviour of quantum systems exhibiting non-local correlations stems from two
factors: The first factor has to do with the employment of supposedly unrelated
classical arithmetics, while the second stems from the identification of the general
notion of localization in the sense of Grothendieck with the restricted notion of
spatial localization. These two factors, of course are intimately connected, since if
somebody sticks blindly to the notion of spatial localization, that works nicely for
a space of points but is completely inadequate to function in a category of points, is
not possible to think of a correlation of arithmetics that are spatially employed far
apart from each other for the description of the observables of the same quantum
system, that can even be the whole universe itself. This is only possible if the
notion of localization is detached from its spatial connotation, as it is the case with
Grothendieck localization in categories. We have seen in detail how the functioning
of covering sieves permits the conception of localization systems in a generalized
topological sense and subsequently the natural appearance of commutative local
arithmetics correlated by means of compatible information content.

8.5. The Abstract De Rham Complex

We consider the differential triad � = (K(AC), dK(AC ),�(K(AC))) that has
been attached to each particular cover in a localization system of a quantum
observables algebra. We further localize over a topological measurement space
X, that we may consider as a nonvoid open subset in Rn, or an n-dimensional
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manifold. In this setting we assume that the classical commutative arithmetic
AC represents C∞(X,R), whereas its corresponding module of variations is the
respective set of 1-forms.

Now, given the differential triad � = (K(AC), dK(AC ),�(K(AC))) localized
sheaf-theoretically over a finite open covering U = (Ua) of X as above, we define
algebraically, for each n ∈ N , n ≥ 2 the n-fold exterior product �n(K(AC)) =∧n

�1(K(AC)), where �(K(AC)) := �1(K(AC)).
Furthermore, we assume the existence of an R-linear sheaf morphism d1 :

�1(K(AC)) → �2(K(AC)), satisfying the Leibniz rule as follows:

d1(f t) = f d1(t)+ ϑ(f ) ∧ t

for every f ∈ K(AC)(U ), t ∈ �1(K(AC))(U ), U ⊆ X. Moreover, we require that
d1 ◦ d0 = 0, where d0 := dK(AC ).

Based on the above, we can now further construct the R-linear sheaf mor-
phism d2 : �2(K(AC)) → �3(K(AC)), satisfying:

d2(t ∧ r) = t ∧ d1(r)+ d1(t) ∧ r

where t, r ∈ �1(AC)(U ), U ⊆ X. Finally, we may assume that d2 satisfies: d2 ◦
d1 = 0.

Thus, by iteration, for each n ∈ N , n ≥ 3 we can construct the R-linear sheaf
morphism dn : �n(K(AC)) → �n+1(K(AC)), satisfying:

dn(t ∧ r) = (−1)n−1t ∧ d1(r)+ dn−1(t) ∧ r

where t ∈ �n−1(K(AC))(U ), r ∈ �1(K(AC))(U ), U ⊆ X.
In the above framework we obtain the following relations:

d3 ◦ d2 = d4 ◦ d3 = · · · = dn+1 ◦ dn = · · · = 0

where n ∈ N , n ≥ 2. This fact allows the construction of the de Rham complex in
our case, as a complex of R-linear sheaf morphisms as follows:

0 → R→ K(AC) → �1(K(AC)) → �2(K(AC)) → · · ·

Now, if we remind that K(AC) consists of elements of the form ψAC
⊗ ξ =

(ψAC
, ξ )+ lQ(AC), as well as, that the differential structure is defined by means

of (ψAC
, ξ )+ lQ(AC) �→ (ψAC

, dAC
ξ )+ lQ(AC), where dAC

ξ corresponds to the
usual differential of a smooth observable ξ , in the case considered, it can be
checked the exactness of the de Rham complex above, by reduction to the well-
known classical case of smooth functions. In this sense, there can be obtained a
version of the Poincare Lemma corresponding to K(AC).
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8.6. Functoriality of the Differential Geometric Mechanism

At this subtle point of the present discussion the major conceptual innovation
of ADG consists of the realization that the differential geometric mechanism as it
is explicated by the functioning of differential triads is not dependent on both, the
arithmetics employed, and the localization methodology adopted. Put differently,
the form of the mechanism describing the propagation of information is universally
the same, irrespectively of the arithmetics employed for encoding and decoding its
content, as well as, the localization contexts deviced for its qualification through
observation. This essentially means that the nature of the differential geometric
mechanism is functorial; therefore, the differential equations based on it, as well
(Mallios, 2004b).

In order to explain the claim presented above in the context of our inquiry
related with the transition from the classical to quantum regime of observable
structure we will make use of a topos-theoretic argument. The argument is based
on the observation that in the functorial environment of the topos of presheaves
over the category of commutative arithmetics the difference between classical
and quantum observable behaviour is expressed as a switch on the representable
functors of the corresponding arithmetics from y[AC]⊗AC

M to R(AQ)⊗AC
M. In

the classical case,

y[AC]⊗AC
M ∼= M ◦Gy[AC ](AC, 1AC

) = M(AC)

and the modelling functor M is assumed to be the identity functor. Under this
identification in the classical case, we may equivalently assume that the category of
commutative arithmetics may be endowed with a discrete Grothendieck topology,
such that, the representable presheaves of commutative arithmetics y[AC ] are being
transformed into sheaves for this topology. In the quantum case, respectively,

R(AQ)⊗AC
M ∼= AQ

by virtue of the counit isomorphism, and moreover, R(AQ) becomes a sheaf for
the Grothendieck topology of epimorphic families from commutative domain
arithmetics. Furthermore, inspecting the unit of the established adjunction as ap-
plied to the representable functors y[AC] and R(AQ) we obtain the corresponding
isomorphisms:

δy[AC ] : y[AC] → HomAQ(M( ), y[AC]⊗AC
M)

δR(AQ) : R(AQ) → HomAQ(M( ),R(AQ)⊗AC
M)

At this instance, if we remind the construction of differential triads, we realize
the following: In the classical case, a differential triad is specified locally by the
triple �C = (AC, dAC

,�(AC)), whereas in the quantum case, a differential triad
is specified locally by the triple �Q = (K(AC), dK(AC ),�(K(AC))). Of course, the
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notion of local is solely determined with respect to the imposed Grothendieck
topology in each case correspondingly. Thus, formally the differential geometric
mechanism is expressed in the classical case by a category of differential triads
attached to the category of commutative arithmetics equipped with the discrete
Grothendieck topology, which is equivalent to considering disjoint differential
triads globally, whereas in the quantum case, by a category of differential triads at-
tached to the category of commutative arithmetics equipped with the Grothendieck
topology of epimorphic families, which is equivalent, correspondingly, to consid-
ering diagrams of interconnected differential triads globally. Consequently, the
mechanism expressed universally as a morphism from the employed arithmetics
to the modules of variation of these arithmetics is functorial with respect to its
domain and codomain instantiations in each case.

Conclusively, whereas the “mechanism of differentials” can be relativized
with respect to different arithmetics and different modules of variation, the form
it assumes is covariant, and simply expressed as an R-linear Leibniz morphism
from the arithmetics to their corresponding modules of variation, provided that
the same localization procedure is respectively employed in both the domain and
the codomain of this morphism within the categorical environments specified.

8.7. The Notions of Connection and Curvature

Interesting things start to happen from a differential geometric point of view
when the assumed localization of the domain categorical environment is different
from the one that is actually applicable in the codomain. This is exactly the case
when a single classical commutative arithmetic AC , in the environment of AC
equipped with the discrete Grothendieck topology, attempts to describe a quantum
system whose actual variation is described by the module �AQ (AC), by setting up
a mechanism of propagation of information. Although we have not defined strictly
�AQ (AC) yet, for the heuristic purposes of the intuitive discussion of this section,
we may assume that it exists and denotes the AQ-module of differentials on AC

corresponding to the arrow AC → AQ. We will see in the next section, where
�AQ (AC) is strictly defined, that it actually stands for an abelian group object of
differentials in the comma category AQ/AQ.

It is instructive to consider two observers using classical commutative arith-
metic AC and ÁC respectively. The observers may localize their arithmetics over
a topological measurement space X and thus have at their disposal the corre-
sponding algebra sheaves over X. In the terminology of ADG a locally finite open
coveringU = (Ua) ofX constitutes a local frame. From the perspective of the arith-
metics of the observers, within their operational categorical environment, viz., AC
equipped with the discrete Grothendieck topology, quantum observable behaviour
is being inferred and uniquely determined, up to isomorphism in the same categor-
ical environment, by the cocycle WÁC,AC

, provided that ÁC

⋂
AC �= 0, using the
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suggestive notation of Section 7.1. Thus, essentially each observer is equipped
with an arrow ÁC

⋂
AC → ÁC and ÁC

⋂
AC → AC respectively, that provides

information about quantum observable behaviour. Let us now restrict our atten-
tion to the observer using the commutative arithmetic AC , and pose the following
question: How should the observer AC set up a differential geometric mechanism
of information propagation related with quantum observable behaviour? First of
all, it is obvious that the expression of the mechanism should be constrained by
the existence of the arrow ÁC

⋂
AC → AC in the environment of AC . This means

that the observer should relativize the mechanism with respect to information
contained in ÁC

⋂
AC . For this purpose the observer restricts the arithmetic AC

at the image of the cocycle in AC , viz., restricts the scalars from AC to ÁC

⋂
AC .

Thus, the observer becomes capable of expressing the mechanism in terms of the
AC-module sheaf E(AC), written suggestively as E(AC) := [Res]AC

ÁC

⋂
AC
AC ,

meaning that ÁC

⋂
AC is understood as the AC-module sheaf E(AC). Further-

more, from the perspective of the arithmetic AC the observer perceives variation
of information regarding quantum behaviour by relativizing the AC-module sheaf
of differentials �(AC) with respect to the arrow ÁC

⋂
AC → AC . Let us denote

this relativization by �AC
ÁC

⋂
AC
= �(E(AC)), meaning the AC-module of differ-

entials on ÁC

⋂
AC . Thus, the observer AC should be able to set up a differential

geometric mechanism of information propagation related with quantum observ-
able behaviour, by means of the following R-linear Leibniz sheaf morphism:

DAC
: E(AC) → �(E(AC))

We will now explain that the sheaf morphism DAC
is actually a connec-

tion on the AC-module sheaf E(AC), introduced by the observer AC in order to
express the relativization of the differential mechanism with respect to the ar-
row ÁC

⋂
AC → AC that induces information about quantum behaviour in the

categorical environment AC . For this purpose, we initially notice that to give a
derivation dAC

: AC → �(AC) is equivalent to giving a R-linear sheaf morphism
of R-algebras

d̃AC
: AC → AC

⊕
�(AC) · ε

a �→ a + da · ε
where AC

⊕
�(AC) · ε, with ε2 = 0, is the ring of dual numbers over AC with

coefficients in �(AC). We note that as an abelian group AC

⊕
�(AC) · ε is the

direct sum AC

⊕
�(AC), and the multiplication law is defined by

(a + da · ε) • (á + d́a · ε) = (a · á + (a · d́a + á · da) · ε)
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We further require that the composition of the augmentation

AC

⊕
�(AC) · ε → AC

with d̃AC
is the identity.

At a next stage, if we use the functor of scalars extension, referring to the
sheaf morphism of R-algebras d̃AC

: AC → AC

⊕
�(AC) · ε, we obtain:

E(AC) �→ E(AC)
⊗

AC

[AC

⊕
�(AC) · ε]

Notice that E(AC)
⊗

AC
[AC

⊕
�(AC) · ε] is an AC

⊕
�(AC) · ε-module.

Hence, by restricting it to AC , denoted obviously by the same symbol, we obtain
a comparison morphism of AC-modules as follows:

D̃AC
: E(AC) → E(AC)

⊗

AC

[AC

⊕
�(AC) · ε]

Thus, the information incorporated in the comparison morphism can be now
expressed as a connection onE(AC), viz., as an R-linear Leibniz sheaf morphism:

DAC
: E(AC) → E(AC)

⊗

AC

�(AC)

Hence the AC-module of differentials on ÁC

⋂
AC , i.e. �(E(AC)), is iden-

tified with the tensor product of AC-modules E(AC)
⊗

AC
�(AC), that is:

�(E(AC)) ≡ E(AC)
⊗

AC

�(AC)

Thus, the differential geometric mechanism of information propagation, re-
lated with quantum observable behaviour, that the observer AC sets up for this
purpose, which is expressed in terms of the R-linear Leibniz sheaf morphism,
DAC

: E(AC) → �(E(AC)), is equivalent with the introduction of a connection
on the AC-module E(AC) in order to account for that observable behaviour,
defined by means of the R-linear Leibniz sheaf morphism, DAC

: E(AC) →
�(AC)⊗ E(AC). We conclude this discussion by realizing the following;

Whereas an observer using quantum arithmetics, expressed locally in the
Grothendieck topology of epimorphic families of its categorical environment
by means of the algebra K(AC) := [R(AQ)(AC)×M(AC)]/lQ(AC), formulates
the differential geometric mechanism locally in terms of the Leibniz morphism
d0

K(AC ) : K(AC) → �(K(AC)), an observer using classical arithmetics, expressed
locally in the atomic Grothendieck topology of its corresponding categorical en-
vironment by means of the algebra AC has to device the notion of connection in
order to express the same mechanism.

In the latter case, from the viewpoint of a classical observer using a commuta-
tive arithmetic, in a discretely topologized categorical environment, not respecting
the localization properties holding in the codomain of variations of his observa-
tions, and by virtue of invariance of the mechanism under relativizations, the only
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way that the formed discrepancy can be compensated is through the introduction
of the notion of connection. Furthermore, using a local frame of E(AC), it can be
readily shown that the AC-connection DAC

can be locally expressed in the form

DAC
= d0

AC
+ ωAC

Hence, DAC
is locally determined uniquely by ωAC

, called the local AC-
connection matrix of DAC

. This means that the AC-connection DAC
of an observer

using a commutative arithmetic plays locally the role of potential.
The notion of AC-connection is always accompanied by the notion of cur-

vature, that in the context of ADG is expressed as another appropriately defined
sheaf morphism, however, now, respecting the arithmetic used, in contradistinc-
tion with what happens with DAC

. More concretely, algebraically is possible to
define the various exterior powers of the module of variations �(AC) = �1(AC),
and furthermore, assume the existence of a second R-linear morphism

d1
AC

: �1(AC) → �2(AC) := �1(AC) ∧�1(AC)

such that d1
AC
◦ d0

AC
= 0, where d1

AC
is called the first exterior derivation. Moreover,

it is possible to define the 1st prolongation of DAC
by

D1
AC

: �1(AC)⊗ E(AC) → �2(AC)⊗ E(AC)

Finally, we can define the curvature of the given AC-connection by the
following commutative diagram:

where RAC
:= D1

AC
◦DAC

.
It is readily seen that the curvature RAC

of the given AC-connection DAC
is

an AC-morphism of the AC-modules involved, that is

RAC
∈ Hom(E(AC),�2(AC)⊗ E(AC))

The physical meaning of the curvature RAC
refers to the detectable effect or

strength of the potential represented by the connection DAC
. From our prism of

interpretation, we emphasize that the curvatureRAC
is the effect detected by an ob-

server employing a commutative arithmetic in a discretely topologized categorical
environment, in the attempt to understand the quantum localization properties in
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the codomain of variations of his observations, after having introduced a potential
in order to reproduce the differential geometric mechanism.

9. QUANTUM FUNCTORIAL DIFFERENTIAL
GEOMETRIC MECHANISM

9.1. Relativization and Abelian Group Objects

In the previous Section we have noticed that in the functorial environment of
the topos of presheaves over the category of commutative arithmetics the difference
between classical and quantum observable behaviour is expressed as a switch on
the representable functors of the corresponding arithmetics from y[AC]⊗AC

M to
R(AQ)⊗AC

M. The problem of establishing a well defined functorial differential
geometric mechanism suitable for quantum observables algebras, based on the
adjunction

L : SetsACop ←−−→ AQ : R

necessitates the construction of a cohomological scheme of interpretation of these
algebras. For this purpose, it is indispensable to have well defined notions of
cohomology modules and derivations in the category AQ, as it is actually the case
in the categoryAC . In order to accomplish this task we adopt the following strategy:
Firstly, we unfold the notions of modules and derivations in the paradigmatic case
of the category AC using the method of relativization, and secondly, we adapt
appropriately the definition of these notions in the category AQ.

The categorical method of relativization involves the passage to comma
categories. The initial problem that is posed in this context of inquiry has to do with
the possibility of representing the information contained in an AC-module, where
AC is a commutative arithmetic in AC , with a suitable object of the relativization
of AC with respect to AC , viz., with an object of the comma category AC/AC .
For this purpose, we define the split extension of the commutative arithmetic AC ,
considered as a commutative ring, by an AC-module M , denoted by AC

⊕
M , as

follows: The underlying set of AC

⊕
M is the cartesian product AC ×M , where

the group and ring theoretic operations are defined respectively as;

(a,m)+ (b, n) : = (a + b,m+ n)

(a,m) • (b, n) : = (ab, a · n+ b ·m)

Notice that the identity element of AC

⊕
M is (1AC

, 0M ), and also that, the
split extension AC

⊕
M contains an ideal 0AC

×M := 〈M〉, that corresponds
naturally to the AC-module M . Thus, given a commutative arithmetic AC in AC ,
the information of anAC-moduleM , consists of an object 〈M〉 (ideal inAC

⊕
M),
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together with a split short exact sequence in AC ;

〈M〉 ↪→ AC

⊕
M → AC

We infer that the ideal 〈M〉 is identified with the kernel of the epimorphism
AC

⊕
M → AC , viz.,

〈M〉 = Ker(AC

⊕
M → AC)

From now on we focus our attention to the comma category AC/AC , noticing
that idAC

: AC → AC is the terminal object in this category. If we consider the
split extension of the commutative arithmetic AC , by an AC-module M , that is
AC

⊕
M , then the morphism:

λ : AC

⊕
M → AC

(a,m) �→ a

is obviously an object of AC/AC . It is a matter of simple algebra to realize that it is
actually an abelian group object in the comma category AC/AC . This equivalently
means that for every object ξ in AC/AC the set of morphisms HomAC/AC

(ξ, λ) is
an abelian group in Sets. Moreover, the arrow γ : κ → λ is a morphism of abelian
groups in AC/AC if and only if for every ξ in AC/AC the morphism;

γ̂ξ : HomAC/AC
(ξ, κ) → HomAC/AC

(ξ, λ)

is a morphism of abelian groups in Sets. We denote the category of abelian group
objects in AC/AC by the suggestive symbol [AC/AC]Ab. Based on our previous
remarks it is straightforward to show that the category of abelian group objects in
AC/AC is equivalent with the category of AC-modules, viz.:

[AC/AC]Ab
∼=M(AC )

Thus, we have managed to characterize intrinsically AC-modules as abelian
group objects in the relativization of the category of commutative arithmetics AC
with respect to AC , and moreover, we have concretely identified them as kernels
of split extensions of AC .

This characterization is particularly useful if we consider anAC-moduleM as
a cohomology module, or equivalently, as a codomain for derivations of objects of
AC/AC . For this purpose, let us initially notice that if k : BC → AC is an arbitrary
object in AC/AC , then any AC-module M is also a BC-module via the map k. We
define a derivations functor from the comma category AC/AC to the category of
abelian groups Ab:

Der(−,M) : AC/AC → Ab
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Then if we evaluate the derivations functor at the commutative arithmetic BC

we obtain:

Der(BC,M) ∼= HomAC/AC
(BC,AC

⊕
M)

This means that, given an object k : BC → AC in AC/AC , then a derivation
dBC

: BC → M is the same as the following morphism in AC/AC :

Now we notice that the morphism: λ : AC

⊕
M → AC is actually an object

in [AC/AC]Ab. Hence, we consider it as an object of [AC/AC] via the action of
an inclusion functor:

ϒAC
: [AC/AC]Ab ↪→ [AC/AC]

[λ : AC

⊕
M → AC] �→ [ϒAC

(λ) : ϒAC
(M) → AC]

Thus we obtain the isomorphism:

Der(BC,M) ∼= HomAC/AC
(BC,ϒAC

(M))

The inclusion functor ϒAC
has a left adjoint functor;

�AC : [AC/AC] → [AC/AC]Ab

Consequently, if we further take into account the equivalence of categories
[AC/AC]Ab

∼=M(AC ), the isomorphism above takes the following final form:

Der(BC,M) ∼= HomM(AC ) (�AC (BC),M)

We conclude that the derivations functor Der(−,M) : AC/AC → Ab is be-
ing represented by the abelianization functor �AC : [AC/AC] → [AC/AC]Ab.
Furthermore, the evaluation of the abelianization functor �AC at an object
k : BC → AC of AC/AC , viz. �AC (BC), is interpreted as the AC-module of dif-
ferentials on BC .

At this stage of development it is obvious that, for cohomological purposes,
we can easily adapt the previously established notions of modules and derivations
to the category of quantum observables algebras AQ. Firstly, we simply define the
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category of AQ-modules as the category of abelian group objects in the comma
category AQ/AQ, viz.;

M(AQ) := [AQ/AQ]Ab

Secondly, we use the above definition in order to introduce the notion of an
AQ-module for derivations in the category AQ. For this purpose we define the
derivations functor from the comma category AQ/AQ to the category of abelian
groups Ab:

Der(−, N) : AQ/AQ → Ab

where N is now anAQ-module, or equivalently, an abelian group object inAQ/AQ.
Hence, ifK : BQ → AQ denotes an object ofAQ/AQ we obtain the isomorphism:

Der(BQ,N ) ∼= HomAQ/AQ
(BQ,ϒAQ

(N ))

where;

ϒAQ
: [AQ/AQ]Ab ↪→ [AQ/AQ]

denotes the corresponding inclusion functor, having a left adjoint abelianization
functor:

�AQ : [AQ/AQ] → [AQ/AQ]Ab

Consequently we obtain again the following isomorphism:

Der(BQ,N) ∼= HomM(AQ ) (�AQ (BQ), N )

We conclude that the derivations functor Der(−, N ) : AQ/AQ → Ab is be-
ing represented by the abelianization functor �AQ : [AQ/AQ] → [AQ/AQ]Ab.
Furthermore, the evaluation of the abelianization functor �AQ at an object
K : BQ → AQ of AQ/AQ, viz. �AQ(BQ), is interpreted correspondingly as the
AQ-module of differentials on BQ.

9.2. Cohomology of Quantum Observables Algebras

The representation of quantum observables algebras AQ in AQ in terms
of sheaves over commutative arithmetics AC in AC for the Grothendieck topol-
ogy of epimorphic families on AC , is based on the existence of the adjunctive
correspondence L � R as follows:

L : SetsA
op

C ←−−→ AQ : R

which says that the functor of points R defined by

R(AQ) : AC �→HomAQ (M(AC), AQ)
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has a left adjoint L : SetsA
op

C → AQ, which is defined for each presheaf P in
SetsA

op

C as the colimit

L(P) = Colim{G(P,AC)
GP−→ AC

M−→ AQ}
Equivalently, there exists a bijection, natural in P and AQ as follows:

Nat(P,R(AQ)) ∼= HomAQ (LP, AQ)

The adjunction can be characterized in terms of the unit and the counit
categorical constructions. For any presheaf P ∈ SetsA

op

C , the unit is defined
as:

δP : P −→ RLP

On the other side, for each object AQ of AQ the counit is:

εAQ
: LR(AQ) −→ AQ

The composite endofunctor G := LR : AQ → AQ, together with the natu-
ral transformations δ : G → G ◦G, called comultiplication, and also, ε : G → I,
called counit, where I is the identity functor on AQ, is defined as a comonad
(G, δ, ε) on the category of quantum observables algebras AQ, provided that the
diagrams below commute for each object AQ of AQ;

For a comonad (G, δ, ε) on AQ, a G-coalgebra is an object AQ of AQ,
being equipped with a structural map κ : AQ → GAQ, such that the following
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conditions are satisfied;

1 = εAQ
◦ κ : AQ → GAQ

Gκ ◦ κ = δAQ
◦ κ : AQ → G2AQ

With the above obvious notion of morphism, this gives a category AQG of
all G-coalgebras.

The counit of the comonad (G, δ, ε) on AQ, that is:

εAQ
: GAQ := LR(AQ) = R(AQ)⊗AC

M −→ AQ

is intuitively the first step of a functorial free resolution of an object AQ in AQ.
Thus, by iteration of G, we may extend εAQ

to a free simplicial resolution of
AQ in AQ. Most importantly, we will consider the case of defining cohomology
groups H̃n(AQ,XQ), n ≥ 0, of a quantum observables algebra AQ in AQ with
coefficients in anAQ-moduleXQ, relative to the given underlying functor of points
R : AQ → SetsA

op

C , defined by R(AQ) : AC �→HomAQ(M(AC), AQ), having a

left adjoint L : SetsA
op

C → AQ.
Thus, let (G, δ, ε) be the comonad on AQ, that is induced by the adjoint

pair of functors L : SetsA
op

C ←−−→ AQ : R The following simplicial object in AQ is
called the free simplicial comonadic resolution of a quantum observables algebra
AQ in AQ, denoted by G�AQ → AQ:

In the simplicial resolution above, ε0,1,2 denotes a triplet of arrows etc. Notice
that, Gn+1 is the term of degree n, whereas the face operator εi : Gn+1 → Gn is
Gi ◦ ε ◦Gn−i , where 0 ≤ i ≤ n. We can verify the following simplicial identities;

εi ◦ εj = εj+1 ◦ εi
where i ≤ j . The comonadic resolution G�AQ → AQ induces clearly a comonadic
resolution in the comma category [AQ/AQ], which we still denote by G�AQ →
AQ.

An n-cochain of a quantum observables algebra AQ with coefficients in an
AQ-module XQ, where, by definition, XQ is an object in [AQ/AQ]Ab, is defined
as a map Gn+1AQ → ϒAQ

(XQ) in the comma category [AQ/AQ]. We remind
that, since XQ is an abelian group object in [AQ/AQ], the set HomAQ (AQ,XQ)
has an abelian group structure for every object AQ in AQ, and moreover, for
every arrow ÁQ → AQ in AQ, the induced map of sets HomAQ (AQ,XQ) →
HomAQ(ÁQ,XQ) is an abelian groups map. Then, we can identify the set of n-
cochains with the abelian group of derivations of Gn+1AQ into the abelian group
object XQ in [AQ/AQ]Ab. Hence, we consider an n-cochain as a derivation map
Gn+1AQ → XQ.
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Consequently, the face operators εi , induce abelian group maps;

Der(εiAQ,XQ) : Der(GnAQ,XQ) → Der(Gn+1AQ,XQ)

Thus, the cohomology can be established by application of the contravariant
functor Der(−, XQ) on the free simplicial resolution of a quantum observables
algebra AQ in AQ, obtaining the following cochain complex of abelian groups;

where, because of the aforementioned simplicial identities we have:

dn+1 =
∑

i

(−1)iDer(εiAQ,XQ)

where 0 ≤ i ≤ n+ 1, and also;

dn+1 ◦ dn = 0

written symbolically as;

d2 = 0

Finally we may also make use of the following isomorphism:

Der(GAQ,XQ) � Hom!(�AQ(GAQ), XQ)

where the abelinazation functor �AQ : [AQ/AQ] → [AQ/AQ]Ab represents
the derivations functor Der(−, XQ) : AQ/AQ → Ab. In this precise sense,
�AQ (GAQ) := �̂(GAQ) is identified with the AQ-module of first order differ-
entials or 1-forms on GAQ. Thus, equivalently, we obtain the following cochain
complex of abelian groups;

Now, we define the cohomology groups H̃n(AQ,XQ), n ≥ 0, of a quantum
observables algebra AQ in AQ with coefficients in an AQ-module XQ as follows:

H̃n(AQ,XQ) := Hn[Der(G�AQ,XQ)] = Ker(dn+1)

Im(dn)

According to the above, a 1-cocycle is a derivation map ω : G2AQ → XQ,
such that:

ε2ω ◦ ε0ω = ε1 ◦ ω
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where εi : G3AQ → G2AQ, i = 0, 1, 2. Correspondingly, a 1-coboundary is a
derivation map υ : GAQ → XQ, which can be presented as a mapping of 1-
cocycles υ : ω→ ώ modulo the conditions:

ω ◦ ε0υ = ε1υ ◦ ώ

9.3. Functorial Connection and Curvature Equation

In this Section we are going to introduce the notion of a functorial quantum
connection, together with, the associated curvature of that connection. The con-
nection is intentionally termed functorial because it is precisely induced by the
functor of points of a quantum observables algebra AQ in AQ, restricted as usual
to commutative arithmetics. For this purpose it is necessary to define appropriately
an AQ-module, denoted by �AQ

, that is going to play the role of a universal object
of quantum differential 1-forms in analogy to the classical case. At this stage, it is
instructive to remind briefly the analogous construction of the classical universal
object of differential 1-forms �AC

, corresponding to a commutative arithmetic
AC . According to Kahler, the free A-module � can be constructed explicitly form
the fundamental form of scalars extension of AC , that is ι : AC ↪→ AC

⊗
RAC by

considering the diagonal morphism:

δ : AC

⊗

R
AC → AC

f1 ⊗ f2 �→ f1 · f2

where f1, f2 ∈ AC . Then by taking the kernel of this morphism of algebras, that
is the ideal;

I = {f1 ⊗ f2 ∈ AC

⊗

R
AC : δ(f1 ⊗ f2) = 0} ⊂ AC

⊗

R
AC

it can be easily proved that the morphism of AC-modules

� : �AC
→ I

I 2

df �→ 1⊗ f − f ⊗ 1

is an isomorphism. Thus the free AC-module �AC
of 1-forms is isomorphic with

the free AC-module I
I 2 of Kahler differentials of the commutative arithmetic AC

over R, according to the following split short exact sequence:

�AC
↪→ AC ⊕�AC

· ε → AC

where ε2 = 0, formulated equivalently as follows:

0 → �AC
→ AC

⊗

R
AC → AC
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In the quantum case, as we have explained in detain in Section 9.2, the counit
of the adjunction εAQ

: LR(AQ) → AQ, defined by the composite endofunctor
G := LR : AQ → AQ, constitutes the first step of a functorial free resolution of
a quantum observables algebra AQ in AQ, generated by iterating the endofunctor
G. In this setting, and in analogy to the classical case, we define the AQ-module
�AQ

of quantum differential 1-forms, by means of the following split short exact
sequence:

0 → JAQ
→ R(AQ)⊗AC

M → AQ

According to the above, we obtain that �AQ
= JAQ

J 2
AQ

, where JAQ
= Ker(εAQ

)

denotes the kernel of the counit of the adjunction. Subsequently, we may apply
the algebraic construction, for each n ∈ N , n ≥ 2, of the n-fold exterior product
�n

AQ
= ∧n

�1
AQ

. Thus, we may now set up the algebraic de Rham complex of
AQ as follows:

AQ → �AQ
→ · · · → �n

AQ
→ · · ·

For the purpose of introducing the notion of a functorial quantum connection,
the crucial idea comes from the realization that the functor of points of a quantum
observables algebra restricted to commutative arithmetics, viz., R(AQ), is a left
exact functor, because it is the right adjoint functor of the established adjunc-
tion. Thus, it preserves the short exact sequence defining the object of quantum
differential 1-forms, in the following form:

0 → R(�AQ
) → R(G(AQ)) → R(AQ)

Hence, we immediately obtain that: R(�AQ
) = Z

Z2 , where Z = Ker(R(εAQ
)).

Then, in analogy to the paradigmatic classical algebraic situation, we define
the notion of a functorial quantum connection, denoted by ∇R(AQ), in terms of the
following Leibniz natural transformation:

∇R(AQ) : R(AQ) → R(�AQ
)

Thus, the quantum connection ∇R(AQ) induces a sequence of functorial mor-
phisms, or equivalently, natural transformations as follows:

R(AQ) → R(�AQ
) → · · · → R(�n

AQ
) → · · ·

Let us denote by;

R∇ : R(AQ) → R(�2
AQ

)

the composition∇1 ◦ ∇0 in the obvious notation, where∇0 := ∇R(AQ). The natural
transformation R∇ is called the curvature of the functorial quantum connection
∇R(AQ). Furthermore, the latter sequence of functorial morphisms, is actually a
complex if and only if R∇ = 0. We say that the quantum connection ∇R(AQ) is
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integrable or flat if R∇ = 0, referring to the above complex as the functorial de
Rham complex of the integrable connection ∇R(AQ) in that case. Thus we arrive at
the following conclusion: The vanishing of the curvature of the functorial quantum
connection, viz.:

R∇ = 0

can be interpreted as the transposition of Einstein’s equations in the quantum
regime, that is inside the topos Shv(AC) of sheaves of algebras over the base
category of commutative algebraic contexts, in the absence of cohomological ob-
structions. We may explain the curvature of the quantum connection as the effect of
non-trivial interlocking of commutative arithmetics, in some underlying diagram
of a quantum observables algebras being formed by such localizing commuta-
tive arithmetics. The non-trivial gluing of commutative arithmetics in localization
systems of a quantum observables algebra is caused by topological obstructions.
These obstructions can be associated with the elements of the non-trivial coho-
mology groups of a quantum observables algebra AQ, in AQ. From a physical
viewpoint, these obstructions can be understood as geometric phases related with
the monodromy of the quantum connection, being evaluated at points AC of the
functor of points of a quantum observables algebra AQ restricted to commutative
arithmetics, which, in turn, has been respectively interpreted as a prelocalization
system of AQ. Intuitively, a non-vanishing curvature may be understood as the
non-local attribute detected by an observer employing a commutative arithmetic
in a discretely topologized categorical environment, in the attempt to understand
the quantum localization properties, after having introduced a potential, or equiv-
alently, a connection, in order to account for these properties by means of a
differential geometric mechanism. Thus, the physical meaning of curvature is as-
sociated with the apparent existence of non-local correlations from the restricted
spatial perspective of disjoint classical commutative arithmetics AC .

10. EPILOGUE

The representation of quantum observables algebras, AQ in AQ, as sheaves,
with respect to the Grothendieck topology of epimorphic families on AC , is of
a remarkable physical significance. If we remind the discussion of the physical
meaning of the adjunction, expressed in terms of the information content, commu-
nicated between commutative arithmetics and quantum arithmetics, we arrive to
the following conclusion: the totality of the content of information, included in the
quantum species of observables structure remains invariant, under commutative
algebras decodings, corresponding to local arithmetics for measurement of observ-
ables, in covering sieves of quantum observables algebras, if, and only if, the counit
of the fundamental adjunction is a quantum algebraic isomorphism. In this man-
ner, the fundamental adjunction is being restricted to an equivalence of categories
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Sh(AC, J) ∼= AQ; making thus, in effect, AQ a Grothendieck topos, equivalent
with the topos of sheaves on the site (AC, J). The above correspondence, that can
be understood as a topos-theoretic generalization of Bohr’s correspondence prin-
ciple, essentially shows that the process of quantization is categorically equivalent
with the process of subcanonical localization and sheafification of information in
commutative terms, appropriately formulated in a generalized topological fashion,
à la Grothendieck.

We also claim that the sheaf-theoretic representation of a quantum observ-
ables algebra reveals that its deep conceptual significance is related not to its global
non-commutative character, but, on the precise manner that distinct local contexts
of observation, understood as commutative arithmetics, are being interconnected
together, so as its informational content is preserved in the totality of its operational
commutative decodings. By the latter, we precisely mean contextual operational
procedures for probing the quantum regime of observable structure, which cate-
gorically give rise to covering sieves, substantiated as interconnected epimorphic
families of the generalized elements of the sheafified functor of points of a quantum
observables algebra R(AQ). The sheaf-theoretic representation expresses exactly
the compatibility of these commutative algebras of observables on their overlaps in
such a way as to leave invariant the amount of information contained in a quantum
system. We may adopt the term reference frames of commutative arithmetics for a
geometric characterization of these local contexts of encoding the information re-
lated to a quantum system, emphasizing their prominent role in the organization of
meaning associated with a quantum algebra of observables. Moreover this termi-
nology signifies the intrinsic contextuality of algebras of quantum observables, as
filtered through the base commutative localizing category, and is suggestive of the
introduction of a relativity principle in the quantum level of observable structure,
as a categorical extension of Takeuti’s and Davis’s research program (Takeuti,
1978; Davis, 1977), related, in the present embodiment, with the invariance of the
informational content with respect to commutative arithmetics reference frames
contained in covering sieves of quantum observables algebras.

Furthermore, the sheaf-theoretic representation of quantum observables al-
gebras makes possible the extension of the mechanism of Differential Geometry
in the quantum regime by a proper adaptation of the methodology of ADG in
a topos-theoretic environment. More concretely, in the terminology of ADG the
differential geometric mechanism is incorporated in the functioning of differential
triads consisting of commutative localized arithmetics, modules of variations of
arithmetics and Leibniz sheaf morphisms from the domains of the former to the
codomains of the latter, instantiating appropriate differentials. Most importantly
the mechanism itself is functorial in nature, or equivalently, is always in force irre-
spectively of the relativizations pertaining the domains and codomains of the dif-
ferentials introduced, provided that the same localization properties are respected
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in the corresponding categorical environments of the domains and codomains of
differentials.

The differential geometric mechanism is expressed in the classical case by
a category of differential triads attached to the category of commutative observ-
able algebras equipped with the discrete Grothendieck topology, whereas in the
quantum case, by a category of differential triads attached to the category of com-
mutative observables algebras, being a generating subcategory of the category of
quantum observables algebras, equipped with the Grothendieck topology of epi-
morphic families. As a consequence of the difference in the categorical localization
properties classical arithmetics are different from quantum arithmetics. In a local
cover belonging to a covering epimorphic sieve, a quantum arithmetic appears as a
quotient of a commutative algebra over an ideal, incorporating information about
all the other covers being compatible with it in a localization system of the former.
Despite the difference in the corresponging arithmetics and modules of variations
of them, the mechanism expressed universally as a morphism from the employed
arithmetics to the modules of variations of these arithmetics is functorial with
respect to its domain and codomain instantiations localized categorically in the
same fashion in each case. Realization of this subtle point has subsequently forced
us to argue that the real power of the abstract differential geometric mechanism,
referring to propagation of information related to observation, is substantiated in
cases where the categorical localization of the arithmetics used for observation is
different from the categorical localization that is actually applicable in the modules
containing variations of observations. As we have seen this is exactly the case when
a disjoint classical commutative arithmeticAC , in the environment ofAC equipped
with the discrete Grothendieck topology, is used for description of a quantum sys-
tem whose actual variation is described by the AQ-module �AQ(AC), denoting
the AQ-module of differentials on AC corresponding to the arrow AC → AQ.
From the perspective of classical arithmetics in discretely topologized categorical
environments the explication of the differential geometric mechanism necessitates
the introduction of a connection, termed quantum potential, for the explanation
of the -peculiar from their viewpoint- categorical localization rules respected by
variations of observations in the quantum regime. The detectable effect emanating
from the introduction of this potential for the description of the mechanism of
information propagation in the resources offered by their arithmetics, is the ap-
pearance of the strength of the employed potential, expressed geometrically as the
curvature of the associated connection. It is instructive to make clear that, in the
present scheme, the geometric notion of curvature does not refer to an underlying
background manifold, since such a structure has neither been postulated nor has
it been required at all in the development of the differential geometric mecha-
nism according to ADG. The physical meaning of curvature is associated with
the apparent existence of non-local correlations from the perspective of disjoint
classical commutative arithmetics AC . Put differently, curvature is the detectable
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effect on a locus associated with a classical commutative arithmetic in a discretely
topologized categorical environment, when observation of quantum behavior takes
place, constituting the denotator of non-local correlations, stemming exclusively
from the restricted sense of spatial locality that the locus shares in its discrete clas-
sical categorical environment. On the contrary, the form of quantum arithmetics,
constructed by epimorphic covering families of sieves from interlocking commu-
tative domain reference frames, incorporate a generalized notion of localization,
not associated with its former restricted spatial connotation, but being defined
only in the relational local terms of compatible information collation among those
frames.

Considering the above scheme of interpretation seriously, we may assert,
characteristically, that the transition in the meaning of generalized localization and
its observable effects, as related with the formulation of a dynamical model that
reflects the transition from the classical to the quantum regime, can be understood
in terms of the observational locoi, corresponding to the respective arithmetics,
as a conceptual transformation from a space of unrelated points endowed with a
classically conceived point-localization structure, to a category of interconnected
generalized points, being themselves localizing morphisms in covering sieves, and
ultimately constituting a Grothendieck topos.

Thus, essentially the transition reflects a shift in the semantics of localization
schemes, from a set-theoretic to a topos-theoretic one. Put differently, the notion
of space of the classical theory is replaced by that one of a Grothendieck topos,
equivalent with the topos of sheaves on the site (AC, J), where the latter is simply
understood as a generalized spatial framework of interrelation of experimentally
gathered information, referring to quantum observable behaviour, being expressed
in reference frames of interlocking commutative arithmetics. Remarkably, the al-
gebraic sheaf-theoretic framework of ADG, conceived via the categorical and
topos-theoretic adaptation attempted in this work, vindicates further the possi-
bility of extending the “mechanism of differentials” in the quantum regime. The
latter is being effectuated by the realization that the character of the mechanism is
functorial with respect to the kind of arithmetics used for description of observable
physical behaviour. Put differently, this means that the differential geometric mech-
anism of description of information propagation in physical terms, is covariant
with respect to the arithmetics employed, denoting reference frames of a topos-
theoretic nature, for decoding its content. Consequently, we are naturally directed
towards a functorial formulation of the differential geometric mechanism, charac-
terizing the dynamics of information propagation, through observable attributes,
localized over commutative reference frames of variable form, thus, affording a
language of dynamics suited to localization schemes of a topos theoretical nature,
suitable for the transcription of dynamics from the classical to the quantum regime
of observable behaviour.
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More concretely, the process of gluing information along the loci of over-
lapping commutative arithmetics, interpreted in this generalized topos-theoretic
localization environment, generates dynamics, involving the transition from the
classical to the quantum regime, by means of the notion of a functorial connec-
tion and its associated curvature natural transformation, conceived in a precise
cohomological manner. In this sense, the vanishing of the curvature of the functo-
rial quantum connection, viz., R∇ = 0, can be interpreted as the transposition of
Einstein’s equations in the quantum regime, that is inside the topos Shv(AC) of
sheaves of algebras over the base category of commutative algebraic contexts, in
the absence of cohomological obstructions.
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